Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-1 (of 1 Records) |
Query Trace: Bucklew-Moyers W[original query] |
---|
Accumulation of ubiquitin and sequestosome-1 implicate protein damage in diacetyl-induced cytotoxicity
Hubbs AF , Fluharty KL , Edwards RJ , Barnabei JL , Grantham JT , Palmer SM , Kelly F , Sargent LM , Reynolds SH , Mercer RR , Goravanahally MP , Kashon ML , Honaker JC , Jackson MC , Cumpston AM , Goldsmith WT , McKinney W , Fedan JS , Battelli LA , Munro T , Bucklew-Moyers W , McKinstry K , Schwegler-Berry D , Friend S , Knepp AK , Smith SL , Sriram K . Am J Pathol 2016 186 (11) 2887-2908 Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive alpha-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this alpha-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the alpha-dicarbonyl group in the protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal markers lysosomal-associated membrane protein 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure