Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Brown Clive[original query] |
---|
Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020.
Patel A , Jernigan DB , 2019-nCOV CDC Response Team , Abdirizak Fatuma , Abedi Glen , Aggarwal Sharad , Albina Denise , Allen Elizabeth , Andersen Lauren , Anderson Jade , Anderson Megan , Anderson Tara , Anderson Kayla , Bardossy Ana Cecilia , Barry Vaughn , Beer Karlyn , Bell Michael , Berger Sherri , Bertulfo Joseph , Biggs Holly , Bornemann Jennifer , Bornstein Josh , Bower Willie , Bresee Joseph , Brown Clive , Budd Alicia , Buigut Jennifer , Burke Stephen , Burke Rachel , Burns Erin , Butler Jay , Cantrell Russell , Cardemil Cristina , Cates Jordan , Cetron Marty , Chatham-Stephens Kevin , Chatham-Stevens Kevin , Chea Nora , Christensen Bryan , Chu Victoria , Clarke Kevin , Cleveland Angela , Cohen Nicole , Cohen Max , Cohn Amanda , Collins Jennifer , Conners Erin , Curns Aaron , Dahl Rebecca , Daley Walter , Dasari Vishal , Davlantes Elizabeth , Dawson Patrick , Delaney Lisa , Donahue Matthew , Dowell Chad , Dyal Jonathan , Edens William , Eidex Rachel , Epstein Lauren , Evans Mary , Fagan Ryan , Farris Kevin , Feldstein Leora , Fox LeAnne , Frank Mark , Freeman Brandi , Fry Alicia , Fuller James , Galang Romeo , Gerber Sue , Gokhale Runa , Goldstein Sue , Gorman Sue , Gregg William , Greim William , Grube Steven , Hall Aron , Haynes Amber , Hill Sherrasa , Hornsby-Myers Jennifer , Hunter Jennifer , Ionta Christopher , Isenhour Cheryl , Jacobs Max , Jacobs Slifka Kara , Jernigan Daniel , Jhung Michael , Jones-Wormley Jamie , Kambhampati Anita , Kamili Shifaq , Kennedy Pamela , Kent Charlotte , Killerby Marie , Kim Lindsay , Kirking Hannah , Koonin Lisa , Koppaka Ram , Kosmos Christine , Kuhar David , Kuhnert-Tallman Wendi , Kujawski Stephanie , Kumar Archana , Landon Alexander , Lee Leslie , Leung Jessica , Lindstrom Stephen , Link-Gelles Ruth , Lively Joana , Lu Xiaoyan , Lynch Brian , Malapati Lakshmi , Mandel Samantha , Manns Brian , Marano Nina , Marlow Mariel , Marston Barbara , McClung Nancy , McClure Liz , McDonald Emily , McGovern Oliva , Messonnier Nancy , Midgley Claire , Moulia Danielle , Murray Janna , Noelte Kate , Noonan-Smith Michelle , Nordlund Kristen , Norton Emily , Oliver Sara , Pallansch Mark , Parashar Umesh , Patel Anita , Patel Manisha , Pettrone Kristen , Pierce Taran , Pietz Harald , Pillai Satish , Radonovich Lewis , Reagan-Steiner Sarah , Reel Amy , Reese Heather , Rha Brian , Ricks Philip , Rolfes Melissa , Roohi Shahrokh , Roper Lauren , Rotz Lisa , Routh Janell , Sakthivel Senthil Kumar Sarmiento Luisa , Schindelar Jessica , Schneider Eileen , Schuchat Anne , Scott Sarah , Shetty Varun , Shockey Caitlin , Shugart Jill , Stenger Mark , Stuckey Matthew , Sunshine Brittany , Sykes Tamara , Trapp Jonathan , Uyeki Timothy , Vahey Grace , Valderrama Amy , Villanueva Julie , Walker Tunicia , Wallace Megan , Wang Lijuan , Watson John , Weber Angie , Weinbaum Cindy , Weldon William , Westnedge Caroline , Whitaker Brett , Whitaker Michael , Williams Alcia , Williams Holly , Willams Ian , Wong Karen , Xie Amy , Yousef Anna . Am J Transplant 2020 20 (3) 889-895 This article summarizes what is currently known about the 2019 novel coronavirus and offers interim guidance. |
Cruise ship travel in the era of COVID-19: A summary of outbreaks and a model of public health interventions.
Guagliardo SAJ , Prasad PV , Rodriguez A , Fukunaga R , Novak RT , Ahart L , Reynolds J , Griffin I , Wiegand R , Quilter LAS , Morrison S , Jenkins K , Wall HK , Treffiletti A , White SB , Regan J , Tardivel K , Freeland A , Brown C , Wolford H , Johansson MA , Cetron MS , Slayton RB , Friedman CR . Clin Infect Dis 2021 74 (3) 490-497 BACKGROUND: Cruise travel contributed to SARS-CoV-2 transmission when there were relatively few cases in the United States. By March 14, 2020, the Centers for Disease Control and Prevention (CDC) issued a No Sail Order suspending U.S. cruise operations; the last U.S. passenger ship docked on April 16. METHODS: We analyzed SARS-CoV-2 outbreaks on cruises in U.S. waters or carrying U.S. citizens and used regression models to compare voyage characteristics. We used compartmental models to simulate the potential impact of four interventions (screening for COVID-19 symptoms; viral testing on two days and isolation of positive persons; reduction of passengers by 40%, crew by 20%, and port visits to one) for 7-day and 14-day voyages. RESULTS: During January 19-April 16, 2020, 89 voyages on 70 ships had known SARS-CoV-2 outbreaks; 16 ships had recurrent outbreaks. There were 1,669 RT-PCR-confirmed SARS-CoV-2 infections and 29 confirmed deaths. Longer voyages were associated with more cases (adjusted incidence rate ratio, 1.10, 95% CI: 1.03-1.17, p < 0.0001). Mathematical models showed that 7-day voyages had about 70% fewer cases than 14-day voyages. On 7-day voyages, the most effective interventions were reducing the number of individuals onboard (43-49% reduction in total infections) and testing passengers and crew (42-43% reduction in total infections). All four interventions reduced transmission by 80%, but no single intervention or combination eliminated transmission. Results were similar for 14-day voyages. CONCLUSIONS: SARS-CoV-2 outbreaks on cruises were common during January-April 2020. Despite all interventions modeled, cruise travel still poses a significant SARS-CoV-2 transmission risk. |
Reducing travel-related SARS-CoV-2 transmission with layered mitigation measures: symptom monitoring, quarantine, and testing.
Johansson MA , Wolford H , Paul P , Diaz PS , Chen TH , Brown CM , Cetron MS , Alvarado-Ramy F . BMC Med 2021 19 (1) 94 BACKGROUND: Balancing the control of SARS-CoV-2 transmission with the resumption of travel is a global priority. Current recommendations include mitigation measures before, during, and after travel. Pre- and post-travel strategies including symptom monitoring, antigen or nucleic acid amplification testing, and quarantine can be combined in multiple ways considering different trade-offs in feasibility, adherence, effectiveness, cost, and adverse consequences. METHODS: We used a mathematical model to analyze the expected effectiveness of symptom monitoring, testing, and quarantine under different estimates of the infectious period, test-positivity relative to time of infection, and test sensitivity to reduce the risk of transmission from infected travelers during and after travel. RESULTS: If infection occurs 0-7 days prior to travel, immediate isolation following symptom onset prior to or during travel reduces risk of transmission while traveling by 30-35%. Pre-departure testing can further reduce risk, with testing closer to the time of travel being optimal even if test sensitivity is lower than an earlier test. For example, testing on the day of departure can reduce risk while traveling by 44-72%. For transmission risk after travel with infection time up to 7 days prior to arrival at the destination, isolation based on symptom monitoring reduced introduction risk at the destination by 42-56%. A 14-day quarantine after arrival, without symptom monitoring or testing, can reduce post-travel risk by 96-100% on its own. However, a shorter quarantine of 7 days combined with symptom monitoring and a test on day 5-6 after arrival is also effective (97--100%) at reducing introduction risk and is less burdensome, which may improve adherence. CONCLUSIONS: Quarantine is an effective measure to reduce SARS-CoV-2 transmission risk from travelers and can be enhanced by the addition of symptom monitoring and testing. Optimal test timing depends on the effectiveness of quarantine: with low adherence or no quarantine, optimal test timing is close to the time of arrival; with effective quarantine, testing a few days later optimizes sensitivity to detect those infected immediately before or while traveling. These measures can complement recommendations such as social distancing, using masks, and hand hygiene, to further reduce risk during and after travel. |
Use of US Public Health Travel Restrictions during COVID-19 Outbreak on Diamond Princess Ship, Japan, February-April 2020.
Medley AM , Marston BJ , Toda M , Kobayashi M , Weinberg M , Moriarty LF , Jungerman MR , Surpris ACA , Knust B , Acosta AM , Shockey CE , Daigle D , Schneider ZD , Charles J , Ishizumi A , Stewart A , Vonnahme LA , Brown C , White S , Cohen NJ , Cetron M . Emerg Infect Dis 2021 27 (3) 710-718 Public health travel restrictions (PHTR) are crucial measures during communicable disease outbreaks to prevent transmission during commercial airline travel and mitigate cross-border importation and spread. We evaluated PHTR implementation for US citizens on the Diamond Princess during its coronavirus disease (COVID-19) outbreak in Japan in February 2020 to explore how PHTR reduced importation of COVID-19 to the United States during the early phase of disease containment. Using PHTR required substantial collaboration among the US Centers for Disease Control and Prevention, other US government agencies, the cruise line, and public health authorities in Japan. Original US PHTR removal criteria were modified to reflect international testing protocols and enable removal of PHTR for persons who recovered from illness. The impact of PHTR on epidemic trajectory depends on the risk for transmission during travel and geographic spread of disease. Lessons learned from the Diamond Princess outbreak provide critical information for future PHTR use. |
Risk Assessment and Management of COVID-19 Among Travelers Arriving at Designated U.S. Airports, January 17-September 13, 2020.
Dollard P , Griffin I , Berro A , Cohen NJ , Singler K , Haber Y , de la Motte Hurst C , Stolp A , Atti S , Hausman L , Shockey CE , Roohi S , Brown CM , Rotz LD , Cetron MS , Alvarado-Ramy F . MMWR Morb Mortal Wkly Rep 2020 69 (45) 1681-1685 In January 2020, with support from the U.S. Department of Homeland Security (DHS), CDC instituted an enhanced entry risk assessment and management (screening) program for air passengers arriving from certain countries with widespread, sustained transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). The objectives of the screening program were to reduce the importation of COVID-19 cases into the United States and slow subsequent spread within states. Screening aimed to identify travelers with COVID-19-like illness or who had a known exposure to a person with COVID-19 and separate them from others. Screening also aimed to inform all screened travelers about self-monitoring and other recommendations to prevent disease spread and obtain their contact information to share with public health authorities in destination states. CDC delegated postarrival management of crew members to airline occupational health programs by issuing joint guidance with the Federal Aviation Administration.* During January 17-September 13, 2020, a total of 766,044 travelers were screened, 298 (0.04%) of whom met criteria for public health assessment; 35 (0.005%) were tested for SARS-CoV-2, and nine (0.001%) had a positive test result. CDC shared contact information with states for approximately 68% of screened travelers because of data collection challenges and some states' opting out of receiving data. The low case detection rate of this resource-intensive program highlighted the need for fundamental change in the U.S. border health strategy. Because SARS-CoV-2 infection and transmission can occur in the absence of symptoms and because the symptoms of COVID-19 are nonspecific, symptom-based screening programs are ineffective for case detection. Since the screening program ended on September 14, 2020, efforts to reduce COVID-19 importation have focused on enhancing communications with travelers to promote recommended preventive measures, reinforcing mechanisms to refer overtly ill travelers to CDC, and enhancing public health response capacity at ports of entry. More efficient collection of contact information for international air passengers before arrival and real-time transfer of data to U.S. health departments would facilitate timely postarrival public health management, including contact tracing, when indicated. Incorporating health attestations, predeparture and postarrival testing, and a period of limited movement after higher-risk travel, might reduce risk for transmission during travel and translocation of SARS-CoV-2 between geographic areas and help guide more individualized postarrival recommendations. |
Severe Acute Respiratory Syndrome Coronavirus 2 Prevalence, Seroprevalence, and Exposure among Evacuees from Wuhan, China, 2020.
Hallowell BD , Carlson CM , Jacobs JR , Pomeroy M , Steinberg J , Tenforde MW , McDonald E , Foster L , Feldstein LR , Rolfes MA , Haynes A , Abedi GR , Odongo GS , Saruwatari K , Rider EC , Douville G , Bhakta N , Maniatis P , Lindstrom S , Thornburg NJ , Lu X , Whitaker BL , Kamili S , Sakthivel SK , Wang L , Malapati L , Murray JR , Lynch B , Cetron M , Brown C , Roohi S , Rotz L , Borntrager D , Ishii K , Moser K , Rasheed M , Freeman B , Lester S , Corbett KS , Abiona OM , Hutchinson GB , Graham BS , Pesik N , Mahon B , Braden C , Behravesh CB , Stewart R , Knight N , Hall AJ , Killerby ME . Emerg Infect Dis 2020 26 (9) 1998-2004 To determine prevalence of, seroprevalence of, and potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among a cohort of evacuees returning to the United States from Wuhan, China, in January 2020, we conducted a cross-sectional study of quarantined evacuees from 1 repatriation flight. Overall, 193 of 195 evacuees completed exposure surveys and submitted upper respiratory or serum specimens or both at arrival in the United States. Nearly all evacuees had taken preventive measures to limit potential exposure while in Wuhan, and none had detectable SARS-CoV-2 in upper respiratory tract specimens, suggesting the absence of asymptomatic respiratory shedding among this group at the time of testing. Evidence of antibodies to SARS-CoV-2 was detected in 1 evacuee, who reported experiencing no symptoms or high-risk exposures in the previous 2 months. These findings demonstrated that this group of evacuees posed a low risk of introducing SARS-CoV-2 to the United States. |
Public Health Responses to COVID-19 Outbreaks on Cruise Ships - Worldwide, February-March 2020.
Moriarty LF , Plucinski MM , Marston BJ , Kurbatova EV , Knust B , Murray EL , Pesik N , Rose D , Fitter D , Kobayashi M , Toda M , Canty PT , Scheuer T , Halsey ES , Cohen NJ , Stockman L , Wadford DA , Medley AM , Green G , Regan JJ , Tardivel K , White S , Brown C , Morales C , Yen C , Wittry B , Freeland A , Naramore S , Novak RT , Daigle D , Weinberg M , Acosta A , Herzig C , Kapella BK , Jacobson KR , Lamba K , Ishizumi A , Sarisky J , Svendsen E , Blocher T , Wu C , Charles J , Wagner R , Stewart A , Mead PS , Kurylo E , Campbell S , Murray R , Weidle P , Cetron M , Friedman CR . MMWR Morb Mortal Wkly Rep 2020 69 (12) 347-352 An estimated 30 million passengers are transported on 272 cruise ships worldwide each year* (1). Cruise ships bring diverse populations into proximity for many days, facilitating transmission of respiratory illness (2). SARS-CoV-2, the virus that causes coronavirus disease (COVID-19) was first identified in Wuhan, China, in December 2019 and has since spread worldwide to at least 187 countries and territories. Widespread COVID-19 transmission on cruise ships has been reported as well (3). Passengers on certain cruise ship voyages might be aged >/=65 years, which places them at greater risk for severe consequences of SARS-CoV-2 infection (4). During February-March 2020, COVID-19 outbreaks associated with three cruise ship voyages have caused more than 800 laboratory-confirmed cases among passengers and crew, including 10 deaths. Transmission occurred across multiple voyages of several ships. This report describes public health responses to COVID-19 outbreaks on these ships. COVID-19 on cruise ships poses a risk for rapid spread of disease, causing outbreaks in a vulnerable population, and aggressive efforts are required to contain spread. All persons should defer all cruise travel worldwide during the COVID-19 pandemic. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure