Last data update: Jun 20, 2025. (Total: 49421 publications since 2009)
Records 1-30 (of 47 Records) |
Query Trace: Britton A[original query] |
---|
Intrinsic immunogenicity is a major determinant of type-specific responses in SARS-CoV-2 infections
Quirk GE , Schoenle MV , Peyton KL , Uhrlaub JL , Lau B , Liang CY , Burgess JL , Ellingson K , Beitel S , Romine J , Lutrick K , Fowlkes A , Britton A , Tyner HL , Caban-Martinez AJ , Naleway A , Gaglani M , Yoon S , Edwards LJ , Olsho L , Dake M , Valdez R , Gordon A , Diamond MS , LaFleur BJ , Nikolich JŽ , Sprissler R , Worobey M , Bhattacharya D . Nat Immunol 2025 ![]() Few type-specific antibodies that recognize drifted epitopes are made during post-vaccination exposures to SARS-CoV-2 variants(1-12), perhaps due to suppression by previous immunity. We compared type-specific B cell responses in unvaccinated and vaccinated individuals with Delta and Omicron BA.1 SARS-CoV-2 variant infections. For both Delta, which is antigenically similar to the vaccine strain, and the more distant BA.1 variant, neutralizing antibodies were greater in post-vaccination variant infections than in primary variant infections. Delta type-specific memory B cells were reduced in post-vaccination Delta infections relative to primary variant infections. Yet some drifted epitopes in the Delta variant elicited minimal responses even in primary infections. For BA.1 infections, type-specific antibodies and memory B cells were mostly undetectable, irrespective of previous immunity. Thus, poor intrinsic antigenicity of drifted epitopes in Delta and BA.1 infections superseded the impact of previous immunity. Enhancing the immunogenicity of vaccine antigens may promote type-specific responses. |
Association of mRNA COVID-19 vaccination and reductions in Post-COVID Conditions following SARS-CoV-2 infection in a US prospective cohort of essential workers
Mak J , Khan S , Britton A , Rose S , Gwynn L , Ellingson KD , Meece J , Feldstein LR , Tyner H , Edwards LJ , Thiese MS , Naleway A , Gaglani M , Solle N , Burgess JL , Lamberte JM , Shea M , Hunt-Smith T , Caban-Martinez A , Porter C , Wiegand R , Rai R , Hegmann KT , Hollister J , Fowlkes A , Wesley M , Philips AL , Rivers P , Bloodworth R , Newes-Adeyi G , Olsho LEW , Yoon SK , Saydah S , Lutrick K . J Infect Dis 2025 231 (3) 665-676 ![]() ![]() BACKGROUND: Data are limited on whether vaccination reduces post COVID conditions (PCCs) risk after less severe nonhospitalized coronavirus disease 2019 (COVID-19). This study assessed whether COVID-19 vaccination protected against PCCs in persons with mild initial infections during Delta and Omicron variant predominance. METHODS: This study utilized a case-control design, nested within the HEROES-RECOVER cohort. Participants aged ≥18 years with test-confirmed severe acute respiratory syndrome coronavirus disease 2 (SARS-CoV-2) between 28 June 2021 and 14 September 2022 were surveyed for PCCs, defined by symptoms lasting >4 weeks after initial infection. Cases self-reported PCCs and controls self-reported no PCCs. The exposure was messenger RNA (mRNA) COVID-19 vaccination (2 or 3 monovalent doses). Odds of PCCs among vaccinated and unvaccinated persons were compared with logistic regression. RESULTS: Of 936 participants, 23.6% reported PCCs and 83.2% were vaccinated. Participants who received 3 vaccine doses had lower odds of PCC-related gastrointestinal, neurological, and other symptoms compared to unvaccinated participants (adjusted odds ratio [95% confidence interval]: 0.37 [.16-.85], 0.56 [.32-.97], and 0.48 [.25-.91], respectively). CONCLUSIONS: COVID-19 vaccination protected against development of PCCs among persons with mild infection during both Delta and Omicron variant predominance, supporting vaccination as an important PCCs prevention tool. |
COVID-19 vaccination and odds of post-COVID-19 condition symptoms in children aged 5 to 17 years
Yousaf AR , Mak J , Gwynn L , Lutrick K , Bloodworth RF , Rai RP , Jeddy Z , LeClair LB , Edwards LJ , Olsho LEW , Newes-Adeyi G , Dalton AF , Caban-Martinez AJ , Gaglani M , Yoon SK , Hegmann KT , Phillips AL , Burgess JL , Ellingson KD , Rivers P , Meece JK , Feldstein LR , Tyner HL , Naleway A , Campbell AP , Britton A , Saydah S . JAMA Netw Open 2025 8 (2) e2459672 IMPORTANCE: An estimated 1% to 3% of children with SARS-CoV-2 infection will develop post-COVID-19 condition (PCC). OBJECTIVE: To evaluate the odds of PCC among children with COVID-19 vaccination prior to SARS-CoV-2 infection compared with odds among unvaccinated children. DESIGN, SETTING, AND PARTICIPANTS: In this case-control study, children were enrolled in a multisite longitudinal pediatric cohort from July 27, 2021, to September 1, 2022, and followed up through May 2023. Analysis used a case (PCC reported)-control (no PCC reported) design and included children aged 5 to 17 years whose first real time-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection occurred during the study period, who were COVID-19 vaccine age-eligible at the time of infection, and who completed a PCC survey at least 60 days after infection. From December 1, 2022, to May 31, 2023, children had weekly SARS-CoV-2 testing and were surveyed regarding PCC (≥1 new or ongoing symptom lasting ≥1 month after infection). EXPOSURES: COVID-19 mRNA vaccination status at time of infection was the exposure of interest; participants were categorized as vaccinated (≥2-dose series completed ≥14 days before infection) or unvaccinated. Vaccination status was verified through vaccination cards or vaccine registry and/or medical records when available. MAIN OUTCOME AND MEASURES: Main outcomes were estimates of the odds of PCC symptoms. Multivariate logistic regression was performed to estimate the odds of PCC among vaccinated children compared with odds of PCC among unvaccinated children. RESULTS: A total of 622 participants were included, with 28 (5%) case participants and 594 (95%) control participants. Median (IQR) age was 10.0 (7.0-11.9) years for case participants and 10.3 (7.8-12.7) years for control participants (P = .37). Approximately half of both groups reported female sex (13 case participants [46%] and 287 control participants [48%]). Overall, 57% of case participants (16 children) and 77% of control participants (458 children) were vaccinated (P = .05). After adjusting for demographic characteristics, number of acute COVID-19 symptoms, and baseline health, COVID-19 vaccination was associated with decreased odds of 1 or more PCC symptom (adjusted odds ratio [aOR], 0.43; 95% CI, 0.19-0.98) and 2 or more PCC symptoms (aOR, 0.27; 95% CI, 0.10-0.69). CONCLUSIONS AND RELEVANCE: In this study, mRNA COVID-19 vaccination was associated with reduced odds of PCC in children. The aORs correspond to an estimated 57% and 73% reduced likelihood of 1 or more and 2 or more PCC symptoms, respectively, among vaccinated vs unvaccinated children. These findings suggest benefits of COVID-19 vaccination beyond those associated with protection against acute COVID-19 and may encourage increased pediatric uptake. |
A framework for monitoring RSV prevention product effectiveness in the United States
Roper LE , Link-Gelles R , Surie D , DeCuir J , Zambrano LD , Prill MM , Havers FP , Jones JM , Melgar M , Hall AJ , Whitehead RD Jr , McMorrow ML , Ioannou GN , Hernandez-Romieu AC , Britton A , Novosad S , Martin A , Feldstein LR , Bajema KL , Kirking H , Moline H , Campbell AP , Aslan M , Hatfield K , Dawood F , Slayton R , Reddy S , Gomes D , Fleming-Dutra KE , Payne AB . Vaccine 2025 45 126633 During 2023, the Centers for Disease Control and Prevention (CDC) recommended the first respiratory syncytial virus (RSV) immunizations intended for widespread use in the United States to prevent severe RSV illness in infants and older adults. CDC, in collaboration with federal, public health, and academic partners, is conducting evaluations of real-world effectiveness of recommended RSV immunization products in the United States. Similar frameworks for evaluation are being applied to RSV vaccines and nirsevimab, a long-acting preventative monoclonal antibody, to estimate product effectiveness. The overall goal of CDC's RSV immunization effectiveness program is to generate timely and robust evidence through observational studies to inform immunization product policy decisions and other measures related to RSV prevention and control. CDC is evaluating effectiveness through high-quality, well-controlled observational studies leveraging a variety of platforms that provide robust data to inform policy decisions. |
Risk reduction in SARS-CoV-2 infection and reinfection conferred by humoral antibody levels among essential workers during Omicron predominance
Hollister J , Porter C , Sprissler R , Beitel SC , Romine JK , Uhrlaub JL , Grant L , Yoo YM , Fowlkes A , Britton A , Olsho LEW , Newes-Adeyi G , Fuller S , Zheng PQ , Gaglani M , Rose S , Dunnigan K , Naleway AL , Gwynn L , Caban-Martinez A , Schaefer Solle N , Tyner HL , Philips AL , Hegmann KT , Yoon S , Lutrick K , Burgess JL , Ellingson KD . PLoS One 2024 19 (12) e0306953 ![]() The extent to which semi-quantitative antibody levels confer protection against SARS-CoV-2 infection in populations with heterogenous immune histories is unclear. Two nested case-control studies were designed within the multisite HEROES/RECOVER prospective cohort of frontline workers to study the relationship between antibody levels and protection against first-time post-vaccination infection and reinfection with SARS-CoV-2 from December 2021 to January 2023. All participants submitted weekly nasal swabs for rRT-PCR testing and blood samples quarterly and following infection or vaccination. Cases of first-time post-vaccination infection following a third dose of monovalent (origin strain WA-1) mRNA vaccine (n = 613) and reinfection (n = 350) were 1:1 matched to controls based on timing of blood draw and other potential confounders. Conditional logistic regression models were fit to estimate infection risk reductions associated with 3-fold increases in end titers for receptor binding domain (RBD). In first-time post-vaccination and reinfection study samples, most were female (67%, 57%), non-Hispanic (82%, 68%), and without chronic conditions (65%, 65%). The odds of first-time post-vaccination infection were reduced by 21% (aOR = 0.79, 95% CI = [0.66-0.96]) for each 3-fold increase in RBD end titers. The odds of reinfection associated with a 3-fold increase in RBD end titers were reduced by 23% (aOR = 0.77, 95% CI = [0.65-0.92] for unvaccinated individuals and 58% (aOR = 0.42, 95% CI = [0.22-0.84]) for individuals with three mRNA vaccine doses following their first infection. Frontline workers with higher antibody levels following a third dose of mRNA COVID-19 vaccine were at reduced risk of SARS-CoV-2 during Omicron predominance. Among those with previous infections, the point estimates of risk reduction associated with antibody levels was greater for those with three vaccine doses compared to those who were unvaccinated. |
Protection from COVID-19 vaccination and prior SARS-CoV-2 infection among children aged 6 months - 4 years, United States, September 2022-April 2023
Feldstein LR , Ruffin J , Wiegand R , Grant L , Babu TM , Briggs-Hagen M , Burgess JL , Caban-Martinez AJ , Chu HY , Ellingson KD , Englund JA , Hegmann KT , Jeddy Z , Kuntz J , Lauring AS , Lutrick K , Martin ET , Mathenge C , Meece J , Midgley CM , Monto AS , Naleway AL , Newes-Adeyi G , Odame-Bamfo L , Olsho LE , Phillips AL , Rai RP , Saydah S , Smith N , Tyner H , Vaughan M , Weil AA , Yoon SK , Britton A , Gaglani M . J Pediatric Infect Dis Soc 2024 To understand how COVID-19 vaccines impact infection risk in children <5 years, we assessed risk of SARS-CoV-2 infection from Sept 2022-April 2023 in three cohort studies. There was no difference in risk by vaccination status. While vaccines reduce severe disease, they may not reduce SARS-CoV-2 infections in young children. |
Effectiveness of bivalent mrna vaccines in preventing symptomatic SARS-CoV-2 infection-increasing community access to testing program, United States, January-September 2023
Ciesla AA , Mak J , Roper LE , Fleming-Dutra KE , Smith ZR , Wiegand RE , Britton A , Miller J , Link-Gelles R . Influenza Other Respir Viruses 2024 18 (11) e70038 ![]() ![]() BACKGROUND: On September 2, 2022, bivalent COVID-19 mRNA vaccines, were recommended to address reduced effectiveness of COVID-19 monovalent vaccines during SARS-CoV-2 Omicron variant predominance. METHODS: Using national pharmacy-based SARS-CoV-2 testing program data from January 15 to September 11, 2023, this test-negative, case-control design study assessed bivalent COVID-19 vaccine effectiveness (VE) against symptomatic infection. RESULTS: VE against symptomatic infection of a bivalent dose between 2 weeks and 1 month after bivalent vaccination ranged from 46% (95% CI: 38%-52%) for those aged ≥ 65 years to 61% (95% CI 41%-75%) for those aged 12-17 years. CONCLUSION: Bivalent vaccines protected against symptomatic infection. However, effectiveness waned over time, emphasizing the need to stay up to date with COVID-19 vaccination. |
Influenza vaccine effectiveness against illness and asymptomatic infection in 2022-2023: A prospective cohort study
White EB , Grant L , Mak J , Olsho L , Edwards LJ , Naleway A , Burgess JL , Ellingson KD , Tyner H , Gaglani M , Lutrick K , Caban-Martinez A , Newes-Adeyi G , Duque J , Yoon SK , Phillips AL , Thompson M , Britton A , Flannery B , Fowlkes A . Clin Infect Dis 2024 BACKGROUND: Previous estimates of vaccine effectiveness (VE) against asymptomatic influenza virus infection based on seroconversion have varied widely and may be biased. We estimated 2022-2023 influenza VE against illness and asymptomatic infection in a prospective cohort. METHODS: In the HEROES-RECOVER cohort, adults at increased occupational risk of influenza exposure across 7 US sites provided weekly symptom reports and nasal swabs for reverse transcription-polymerase chain reaction (RT-PCR) influenza testing. Laboratory-confirmed influenza virus infections were classified as symptomatic (≥1 symptom) or asymptomatic during the week of testing. Participants reported demographic information and vaccination through surveys; most sites verified vaccination through medical record and immunization registry review. Person-time was calculated as days from the site-specific influenza season start (September-October 2022) through date of infection, study withdrawal, or season end (May 2023). We compared influenza incidence among vaccinated versus unvaccinated participants overall, by symptom status, and by influenza A subtype, using Cox proportional hazards regression adjusted for site and occupation. We estimated VE as (1 - adjusted hazard ratio) × 100%. RESULTS: In total, 269 of 3785 (7.1%) participants had laboratory-confirmed influenza, including 263 (98%) influenza A virus infections and 201 (75%) symptomatic illnesses. Incidence of laboratory-confirmed influenza illness among vaccinated versus unvaccinated participants was 23.7 and 33.2 episodes per 100 000 person-days, respectively (VE: 38%; 95% CI: 15%-55%). Incidence of asymptomatic influenza virus infection was 8.0 versus 11.6 per 100 000 (VE: 13%; 95% CI: -47%, 49%). CONCLUSIONS: Vaccination reduced incidence of symptomatic but not asymptomatic influenza virus infection, suggesting that influenza vaccination attenuates progression from infection to illness. |
Risk of clade II mpox associated with intimate and nonintimate close contact among men who have sex with men and transgender adults - United States, August 2022-July 2023
Chard AN , Dalton AF , Diallo AO , Moulia DL , Deputy NP , Zecca IB , Quilter LAS , Kachur RE , McCollum AM , Rowlands JV , Britton AN , Fisher R , Chai SJ , Licherdell E , Still WL , Morris AL , Castilho JL , Markus TM , Morrow AS , Danza P , Hansen AP , Ali SI , Wegner CW , Weber R , Betancourt GS , Zipprich J , Sutton M , Pathela P , Hawkins S , Wendel KA , Feldstein LR . MMWR Morb Mortal Wkly Rep 2024 73 (40) 896-902 ![]() A global outbreak of clade II mpox associated with sexual contact, disproportionately affecting gay, bisexual, and other men who have sex with men (MSM), has been ongoing since May 2022. Information on types of contact most associated with transmission is limited. This report used data from a multijurisdictional vaccine effectiveness case-control study of sexually active persons aged 18-49 years who identified as MSM or transgender, collected during August 2022-July 2023. Odds of mpox associated with selected types of intimate and nonintimate close contact with a person with mpox were estimated. Among 457 case-patients and 1,030 control patients who met minimum data requirements, 150 (32.8%) case-patients and 57 (5.5%) control patients reported close contact with a person with mpox and were included in this analysis. Adjusted odds of mpox were 5.4 times as high among those who reported having condomless receptive anal sex with a person with mpox, compared with participants who reported close contact with a person with mpox and no condomless receptive anal sex with that person (OR = 5.4; p = 0.031). Although the mpox vaccine is highly effective, vaccination coverage remains low; a multifaceted approach to prevention remains important and should include vaccination promotion, safer sex practices, and increasing awareness that mpox continues to circulate. |
Regulatory elements in SEM1-DLX5-DLX6 (7q21.3) locus contribute to genetic control of coronal nonsyndromic craniosynostosis and bone density-related traits
Nicoletti P , Zafer S , Matok L , Irron I , Patrick M , Haklai R , Evangelista JE , Marino GB , Ma'ayan A , Sewda A , Holmes G , Britton SR , Lee WJ , Wu M , Ru Y , Arnaud E , Botto L , Brody LC , Byren JC , Caggana M , Carmichael SL , Cilliers D , Conway K , Crawford K , Cuellar A , Di Rocco F , Engel M , Fearon J , Feldkamp ML , Finnell R , Fisher S , Freudlsperger C , Garcia-Fructuoso G , Hagge R , Heuzé Y , Harshbarger RJ , Hobbs C , Howley M , Jenkins MM , Johnson D , Justice CM , Kane A , Kay D , Gosain AK , Langlois P , Legal-Mallet L , Lin AE , Mills JL , Morton JEV , Noons P , Olshan A , Persing J , Phipps JM , Redett R , Reefhuis J , Rizk E , Samson TD , Shaw GM , Sicko R , Smith N , Staffenberg D , Stoler J , Sweeney E , Taub PJ , Timberlake AT , Topczewska J , Wall SA , Wilson AF , Wilson LC , Boyadjiev SA , Wilkie AOM , Richtsmeier JT , Jabs EW , Romitti PA , Karasik D , Birnbaum RY , Peter I . Genet Med Open 2024 2 ![]() PURPOSE: The etiopathogenesis of coronal nonsyndromic craniosynostosis (cNCS), a congenital condition defined by premature fusion of 1 or both coronal sutures, remains largely unknown. METHODS: We conducted the largest genome-wide association study of cNCS followed by replication, fine mapping, and functional validation of the most significant region using zebrafish animal model. RESULTS: Genome-wide association study identified 6 independent genome-wide-significant risk alleles, 4 on chromosome 7q21.3 SEM1-DLX5-DLX6 locus, and their combination conferred over 7-fold increased risk of cNCS. The top variants were replicated in an independent cohort and showed pleiotropic effects on brain and facial morphology and bone mineral density. Fine mapping of 7q21.3 identified a craniofacial transcriptional enhancer (eDlx36) within the linkage region of the top variant (rs4727341; odds ratio [95% confidence interval], 0.48[0.39-0.59]; P = 1.2E-12) that was located in SEM1 intron and enriched in 4 rare risk variants. In zebrafish, the activity of the transfected human eDlx36 enhancer was observed in the frontonasal prominence and calvaria during skull development and was reduced when the 4 rare risk variants were introduced into the sequence. CONCLUSION: Our findings support a polygenic nature of cNCS risk and functional role of craniofacial enhancers in cNCS susceptibility with potential broader implications for bone health. |
Cost-effectiveness of vaccinating adults aged 60 years and older against respiratory syncytial virus
Hutton DW , Prosser LA , Rose AM , Mercon K , Ortega-Sanchez IR , Leidner AJ , Havers FP , Prill MM , Whitaker M , Roper LE , Pike J , Britton A , Melgar M . Vaccine 2024 42 (24) 126294 Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in older adults. In May 2023, two subunit RSV vaccines (Arexvy [GSK] and Abrysvo [Pfizer]) received approval from the U.S. Food and Drug Administration (FDA). In June 2023, ACIP recommended that adults aged ≥60 years may receive a single dose of RSV vaccine, using shared clinical decision-making. In support of development of this policy, our objective was to assess the cost-effectiveness of RSV vaccination in the general population in this age group. We used a decision-analytical model of RSV over a two-year timeframe using data from published literature, FDA documents, epidemiological databases, and manufacturer data. We tracked RSV-associated outpatient, emergency department, inpatient healthcare utilization, RSV-attributable deaths, quality-adjusted life-years lost (QALYs), and societal costs. The societal cost per QALY saved from RSV vaccination depended on age group and product: adults aged ≥60 years, $196,842 for GSK's vaccine and $176,557 for Pfizer's vaccine; adults ≥65 years, $162,138 for GSK and $146,543 for Pfizer; adults 60- <65 years, $385,829 for GSK and $331,486 for Pfizer. Vaccine efficacy, incidence of RSV hospitalization, and vaccine cost had the greatest influence on cost per QALY. Cost per QALY saved decreased as the age of those vaccinated increased. Inputs such as long-term efficacy are uncertain. RSV vaccination in adults aged ≥60 years may be cost-effective, particularly in those of more advanced age. Lower vaccine acquisition costs and persistent efficacy beyond two RSV seasons would render RSV vaccination more cost-effective for a broader target population. PRIMARY FUNDING SOURCE: US Centers for Disease Control and Prevention. |
Select gut microbiota impede rotavirus vaccine efficacy
Ngo VL , Wang Y , Wang Y , Shi Z , Britton R , Zou J , Ramani S , Jiang B , Gewirtz AT . Cell Mol Gastroenterol Hepatol 2024 101393 ![]() ![]() BACKGROUND& AIMS: The protection provided by rotavirus (RV) vaccines is highly heterogeneous amongst individuals. We hypothesized that microbiota composition might influence RV vaccine efficacy. METHODS: First, we examined the potential of segmented filamentous bacteria (SFB) colonization to influence RV vaccine efficacy in mice. Next, we probed the Influence of human microbiomes on RV vaccination via administering mice fecal microbial transplants (FMT) from children with robust or minimal RV vaccine responsiveness. Post-FMT, mice were subjected to RV vaccination followed by RV challenge. RESULTS: SFB colonization induced a phenotype that was reminiscent of RV vaccine failure, i.e. failure to generate RV antigens and, consequently, anti-RV antibodies following RV vaccination resulting in proneness to RV challenge after SFB levels diminished. FMT from children to mice recapitulated donor vaccination phenotype. Specifically, mice receiving FMT from high-responsive vaccinees copiously shed RV antigens and robustly generated anti-RV antibodies following RV vaccination. Concomitantly, such mice were impervious to RV challenge. In contrast, mice receiving FMT from children who had not responded to RV vaccination exhibited only modest responses to RV vaccination and, concomitantly, remained prone to RV challenge. Microbiome analysis ruled out a role for SFB but suggested involvement of Clostridium perfringens. Oral administration of cultured C. perfringens to gnotobiotic mice partially recapitulated the RV vaccine non-responder phenotype. Analysis of published microbiome data found C. perfringens abundance in children modestly associated with RV vaccine failure. CONCLUSION: Microbiota composition influences RV vaccine efficacy with C. perfringens being one, perhaps of many, potential contributing taxa. |
Evaluating immunologic and illness outcomes of SARS-CoV-2 infection in vaccinated and unvaccinated children aged ≥ 5 years, in a multisite longitudinal cohort
Porter C , Lyski ZL , Uhrlaub JL , Ellingson KD , Jeddy Z , Gwynn L , Rivers P , Sprissler R , Hegmann KT , Coughlin MM , Fowlkes AL , Hollister J , LeClair L , Mak J , Beitel SC , Fuller S , Zheng PQ , Vaughan M , Rai RP , Grant L , Newes-Adeyi G , Yoo YM , Olsho L , Burgess JL , Caban-Martinez AJ , Yoon SK , Britton A , Gaglani M , Phillips AL , Thiese MS , Hagen MB , Jones JM , Lutrick K . Diseases 2024 12 (8) ![]() Hybrid immunity, as a result of infection and vaccination to SARS-CoV-2, has been well studied in adults but limited evidence is available in children. We evaluated the antibody responses to primary SARS-CoV-2 infection among vaccinated and unvaccinated children aged ≥ 5 years. METHODS: A longitudinal cohort study of children aged ≥ 5 was conducted during August 2021-August 2022, at sites in Arizona, Texas, Utah, and Florida. Children submitted weekly nasal swabs for PCR testing and provided sera 14-59 days after PCR-confirmed SARS-CoV-2 infection. Antibodies were measured by ELISA against the receptor-binding domain (RBD) and S2 domain of ancestral Spike (WA1), in addition to Omicron (BA.2) RBD, following infection in children, with and without prior monovalent ancestral mRNA COVID-19 vaccination. RESULTS: Among the 257 participants aged 5 to 18 years, 166 (65%) had received at least two mRNA COVID-19 vaccine doses ≥ 14 days prior to infection. Of these, 53 occurred during Delta predominance, with 37 (70%) unvaccinated at the time of infection. The remaining 204 infections occurred during Omicron predominance, with 53 (26%) participants unvaccinated. After adjusting for weight, age, symptomatic infection, and gender, significantly higher mean RBD AUC values were observed among the vaccinated group compared to the unvaccinated group for both WA1 and Omicron (p < 0.0001). A smaller percentage of vaccinated children reported fever during illness, with 55 (33%) reporting fever compared to 44 (48%) unvaccinated children reporting fever (p = 0.021). CONCLUSIONS: Children with vaccine-induced immunity at the time of SARS-CoV-2 infection had higher antibody levels during convalescence and experienced less fever compared to unvaccinated children during infection. |
Early safety findings among persons aged ≥60 years who received a respiratory syncytial virus vaccine - United States, May 3, 2023-April 14, 2024
Hause AM , Moro PL , Baggs J , Zhang B , Marquez P , Melgar M , Britton A , Stroud E , Myers TR , Rakickas J , Blanc PG , Welsh K , Broder KR , Su JR , Shay DK . MMWR Morb Mortal Wkly Rep 2024 73 (21) 489-494 |
Hybrid immunity and SARS-CoV-2 antibodies: results of the HEROES-RECOVER prospective cohort study
Romine JK , Li H , Coughlin MM , Jones JM , Britton A , Tyner HL , Fuller SB , Bloodworth R , Edwards LJ , Etoule JN , Morrill TC , Newes-Adeyi G , Olsho LEW , Gaglani M , Fowlkes A , Hollister J , Bedrick EJ , Uhrlaub JL , Beitel S , Sprissler RS , Lyski Z , Porter CJ , Rivers P , Lutrick K , Caban-Martinez AJ , Yoon SK , Phillips AL , Naleway AL , Burgess JL , Ellingson KD . Clin Infect Dis 2024 BACKGROUND: There are limited data on whether hybrid immunity differs by count and order of immunity-conferring events (SARS-CoV-2 infection or COVID-19 vaccination). From a cohort of health care personnel, first responders, and other frontline workers in six US states, we examined heterogeneity of the effect of hybrid immunity on SARS-CoV-2 antibody levels. METHODS: Exposures included event-count (sum of infections and vaccine doses) and event-order, categorized into seven permutations of vaccination and/or infection. Outcome was level of serum binding antibodies against receptor binding domain (RBD) of the ancestral SARS-CoV-2 spike protein (total RBD-binding Ig), measured by enzyme-linked immunosorbent assay. Mean antibody levels were examined up to 365 days after each of the 1st-7th events. RESULTS: Analysis included 5,793 participants measured from August 7, 2020 to April 15, 2023. Hybrid immunity from infection before one or two vaccine doses elicited modestly superior antibody responses after the 2nd and 3rd events (compared to infections or vaccine-doses alone). This superiority was not evident after the 4th and 5th events (additional doses). Among adults infected before vaccination, adjusted geometric mean ratios (95% CI) of anti-RBD early response (versus vaccinated-only) were 1.23 (1.14-1.33), 1.09 (1.03-1.14), 0.87 (0.81-0.94), and 0.99 (0.85-1.15) after the 2nd-5th events, respectively. Post-vaccination infections elicited superior responses: adjusted geometric mean ratios (95% CI) of anti-RBD early response (versus vaccinated-only) were: 0.93 (0.75-1.17), 1.11 (1.06-1.16), 1.17 (1.11-1.24), and 1.20 (1.07-1.34) after the 2nd-5th events, respectively. CONCLUSIONS AND RELEVANCE: Findings reflecting heterogeneity in antibody levels by permutations of infection and vaccination history could inform COVID-19 vaccination policy. |
Effectiveness of bivalent mRNA COVID-19 vaccines in preventing SARS-cov-2 infection in children and adolescents aged 5 to 17 years
Feldstein LR , Britton A , Grant L , Wiegand R , Ruffin J , Babu TM , Briggs Hagen M , Burgess JL , Caban-Martinez AJ , Chu HY , Ellingson KD , Englund JA , Hegmann KT , Jeddy Z , Lauring AS , Lutrick K , Martin ET , Mathenge C , Meece J , Midgley CM , Monto AS , Newes-Adeyi G , Odame-Bamfo L , Olsho LEW , Phillips AL , Rai RP , Saydah S , Smith N , Steinhardt L , Tyner H , Vandermeer M , Vaughan M , Yoon SK , Gaglani M , Naleway AL . Jama 2024 331 (5) 408-416 ![]() ![]() IMPORTANCE: Bivalent mRNA COVID-19 vaccines were recommended in the US for children and adolescents aged 12 years or older on September 1, 2022, and for children aged 5 to 11 years on October 12, 2022; however, data demonstrating the effectiveness of bivalent COVID-19 vaccines are limited. OBJECTIVE: To assess the effectiveness of bivalent COVID-19 vaccines against SARS-CoV-2 infection and symptomatic COVID-19 among children and adolescents. DESIGN, SETTING, AND PARTICIPANTS: Data for the period September 4, 2022, to January 31, 2023, were combined from 3 prospective US cohort studies (6 sites total) and used to estimate COVID-19 vaccine effectiveness among children and adolescents aged 5 to 17 years. A total of 2959 participants completed periodic surveys (demographics, household characteristics, chronic medical conditions, and COVID-19 symptoms) and submitted weekly self-collected nasal swabs (irrespective of symptoms); participants submitted additional nasal swabs at the onset of any symptoms. EXPOSURE: Vaccination status was captured from the periodic surveys and supplemented with data from state immunization information systems and electronic medical records. MAIN OUTCOME AND MEASURES: Respiratory swabs were tested for the presence of the SARS-CoV-2 virus using reverse transcriptase-polymerase chain reaction. SARS-CoV-2 infection was defined as a positive test regardless of symptoms. Symptomatic COVID-19 was defined as a positive test and 2 or more COVID-19 symptoms within 7 days of specimen collection. Cox proportional hazards models were used to estimate hazard ratios for SARS-CoV-2 infection and symptomatic COVID-19 among participants who received a bivalent COVID-19 vaccine dose vs participants who received no vaccine or monovalent vaccine doses only. Models were adjusted for age, sex, race, ethnicity, underlying health conditions, prior SARS-CoV-2 infection status, geographic site, proportion of circulating variants by site, and local virus prevalence. RESULTS: Of the 2959 participants (47.8% were female; median age, 10.6 years [IQR, 8.0-13.2 years]; 64.6% were non-Hispanic White) included in this analysis, 25.4% received a bivalent COVID-19 vaccine dose. During the study period, 426 participants (14.4%) had laboratory-confirmed SARS-CoV-2 infection. Among these 426 participants, 184 (43.2%) had symptomatic COVID-19, 383 (89.9%) were not vaccinated or had received only monovalent COVID-19 vaccine doses (1.38 SARS-CoV-2 infections per 1000 person-days), and 43 (10.1%) had received a bivalent COVID-19 vaccine dose (0.84 SARS-CoV-2 infections per 1000 person-days). Bivalent vaccine effectiveness against SARS-CoV-2 infection was 54.0% (95% CI, 36.6%-69.1%) and vaccine effectiveness against symptomatic COVID-19 was 49.4% (95% CI, 22.2%-70.7%). The median observation time after vaccination was 276 days (IQR, 142-350 days) for participants who received only monovalent COVID-19 vaccine doses vs 50 days (IQR, 27-74 days) for those who received a bivalent COVID-19 vaccine dose. CONCLUSION AND RELEVANCE: The bivalent COVID-19 vaccines protected children and adolescents against SARS-CoV-2 infection and symptomatic COVID-19. These data demonstrate the benefit of COVID-19 vaccine in children and adolescents. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations. |
Early estimates of updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccine effectiveness against symptomatic SARS-CoV-2 infection attributable to co-circulating Omicron variants among immunocompetent adults - increasing community access to testing program, United States, September 2023-January 2024
Link-Gelles R , Ciesla AA , Mak J , Miller JD , Silk BJ , Lambrou AS , Paden CR , Shirk P , Britton A , Smith ZR , Fleming-Dutra KE . MMWR Morb Mortal Wkly Rep 2024 73 (4) 77-83 ![]() ![]() On September 12, 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (updated) COVID-19 vaccination with a monovalent XBB.1.5-derived vaccine for all persons aged ≥6 months to prevent COVID-19, including severe disease. During fall 2023, XBB lineages co-circulated with JN.1, an Omicron BA.2.86 lineage that emerged in September 2023. These variants have amino acid substitutions that might increase escape from neutralizing antibodies. XBB lineages predominated through December 2023, when JN.1 became predominant in the United States. Reduction or failure of spike gene (S-gene) amplification (i.e., S-gene target failure [SGTF]) in real-time reverse transcription-polymerase chain reaction testing is a time-dependent, proxy indicator of JN.1 infection. Data from the Increasing Community Access to Testing SARS-CoV-2 pharmacy testing program were analyzed to estimate updated COVID-19 vaccine effectiveness (VE) (i.e., receipt versus no receipt of updated vaccination) against symptomatic SARS-CoV-2 infection, including by SGTF result. Among 9,222 total eligible tests, overall VE among adults aged ≥18 years was 54% (95% CI = 46%-60%) at a median of 52 days after vaccination. Among 2,199 tests performed at a laboratory with SGTF testing, VE 60-119 days after vaccination was 49% (95% CI = 19%-68%) among tests exhibiting SGTF and 60% (95% CI = 35%-75%) among tests without SGTF. Updated COVID-19 vaccines provide protection against symptomatic infection, including against currently circulating lineages. CDC will continue monitoring VE, including for expected waning and against severe disease. All persons aged ≥6 months should receive an updated COVID-19 vaccine dose. |
Longitudinal parental perception of COVID-19 vaccines for children in a multi-site, cohort study
Rivers P , Porter C , LeClair LB , Jeddy Z , Fowlkes AL , Lamberte JM , Herder K , Smith M , Rai R , Grant L , Hegmann KT , Jovel K , Vaughan M , Mathenge C , Phillips AL , Khan S , Britton A , Pilishvili T , Burgess JL , Newes-Adeyi G , Gaglani M , Caban-Martinez A , Yoon S , Lutrick K . Vaccine 2024 OBJECTIVES: Pediatric COVID-19 vaccine hesitancy and uptake is not well understood. Among parents of a prospective cohort of children aged 6 months-17 years, we assessed COVID-19 vaccine knowledge, attitudes, and practices (KAP), and uptake over 15 months. METHODS: The PROTECT study collected sociodemographic characteristics of children at enrollment and COVID-19 vaccination data and parental KAPs quarterly. Univariable and multivariable logistic regression models were used to test the effect of KAPs on vaccine uptake; McNemar's test for paired samples was used to evaluate KAP change over time. RESULTS: A total of 2,837 children were enrolled, with more than half (61 %) vaccinated by October 2022. Positive parental beliefs about vaccine safety and effectiveness strongly predicted vaccine uptake among children aged 5-11 years (aOR 13.1, 95 % CI 8.5-20.4 and aOR 6.4, 95 % CI 4.3-9.6, respectively) and children aged 12+ years (aOR 7.0, 95 % CI 3.8-13.0 and aOR 8.9, 95 % CI 4.4-18.0). Compared to enrollment, at follow-up parents (of vaccinated and unvaccinated children) reported higher self-assessed vaccine knowledge, but more negative beliefs towards vaccine safety, effectiveness, and trust in government. Parents unlikely to vaccinate their children at enrollment reported more positive beliefs on vaccine knowledge, safety, and effectiveness at follow-up. CONCLUSION: The PROTECT cohort allows for an examination of factors driving vaccine uptake and how beliefs about COVID-19 and the COVID-19 vaccines change over time. Findings of the current analysis suggest that these beliefs change over time and policies aiming to increase vaccine uptake should focus on vaccine safety and effectiveness. |
Building the U.S. COVID-19 vaccine effectiveness program: Past successes and future directions
Link-Gelles R , Britton A , Fleming-Dutra KE . Vaccine 2023 ![]() COVID-19 vaccines were originally authorized in the United States in December 2020 on the basis of safety, immunogenicity, and clinical efficacy data from randomized controlled trials (RCTs). However, real-world vaccine effectiveness (VE) data are necessary to provide information on how the vaccines work in populations not included in the RCTs (e.g., nursing home residents), against new SARS-CoV-2 variants, with increasing time since vaccination, and in populations with increasing levels of prior infection. The goal of CDC's COVID-19 VE program is to provide timely and robust data to support ongoing policy decisions and implementation of vaccination and includes VE platforms to study the spectrum of illness, from infection to critical illness. Challenges to estimating VE include accurate ascertainment of vaccination history, outcome status, changing rates of prior infection, emergence of new variants, and appropriate interpretation of absolute and relative VE measures. CDC COVID-19 VE platforms have played a pivotal role in numerous vaccine policy decisions since 2021 and will continue to play a key role in future decisions as the vaccine program moves from an emergency response to a routine schedule. |
Effectiveness of a bivalent mRNA vaccine dose against symptomatic SARS-CoV-2 infection among U.S. Healthcare personnel, September 2022-May 2023
Plumb ID , Briggs Hagen M , Wiegand R , Dumyati G , Myers C , Harland KK , Krishnadasan A , James Gist J , Abedi G , Fleming-Dutra KE , Chea N , Lee JE , Kellogg M , Edmundson A , Britton A , Wilson LE , Lovett SA , Ocampo V , Markus TM , Smithline HA , Hou PC , Lee LC , Mower W , Rwamwejo F , Steele MT , Lim SC , Schrading WA , Chinnock B , Beiser DG , Faine B , Haran JP , Nandi U , Chipman AK , LoVecchio F , Eucker S , Femling J , Fuller M , Rothman RE , Curlin ME , Talan DA , Mohr NM . Vaccine 2023 ![]() ![]() BACKGROUND: Bivalent mRNA vaccines were recommended since September 2022. However, coverage with a recent vaccine dose has been limited, and there are few robust estimates of bivalent VE against symptomatic SARS-CoV-2 infection (COVID-19). We estimated VE of a bivalent mRNA vaccine dose against COVID-19 among eligible U.S. healthcare personnel who had previously received monovalent mRNA vaccine doses. METHODS: We conducted a case-control study in 22 U.S. states, and enrolled healthcare personnel with COVID-19 (case-participants) or without COVID-19 (control-participants) during September 2022-May 2023. Participants were considered eligible for a bivalent mRNA dose if they had received 2-4 monovalent (ancestral-strain) mRNA vaccine doses, and were ≥67 days after the most recent vaccine dose. We estimated VE of a bivalent mRNA dose using conditional logistic regression, accounting for matching by region and four-week calendar period. We adjusted estimates for age group, sex, race and ethnicity, educational level, underlying health conditions, community COVID-19 exposure, prior SARS-CoV-2 infection, and days since the last monovalent mRNA dose. RESULTS: Among 3,647 healthcare personnel, 1,528 were included as case-participants and 2,119 as control-participants. Participants received their last monovalent mRNA dose a median of 404 days previously; 1,234 (33.8%) also received a bivalent mRNA dose a median of 93 days previously. Overall, VE of a bivalent dose was 34.1% (95% CI, 22.6%-43.9%) against COVID-19 and was similar by product, days since last monovalent dose, number of prior doses, age group, and presence of underlying health conditions. However, VE declined from 54.8% (95% CI, 40.7%-65.6%) after 7-59 days to 21.6% (95% CI 5.6%-34.9%) after ≥60 days. CONCLUSIONS: Bivalent mRNA COVID-19 vaccines initially conferred approximately 55% protection against COVID-19 among U.S. healthcare personnel. However, protection waned after two months. These findings indicate moderate initial protection against symptomatic SARS-CoV-2 infection by remaining up-to-date with COVID-19 vaccines. |
Serum per- and polyfluoroalkyl substance concentrations and longitudinal change in post-infection and post-vaccination SARS-CoV-2 antibodies
Hollister J , Caban-Martinez AJ , Ellingson KD , Beitel S , Fowlkes AL , Lutrick K , Tyner H , Naleway AL , Yoon SK , Gaglani M , Hunt D , Meece J , Mayo Lamberte J , Schaefer Solle N , Rose S , Dunnigan K , Khan SM , Kuntz JL , Fisher JM , Coleman A , Britton A , Thiese M , Hegmann K , Pavuk M , Ramadan F , Fuller S , Nematollahi A , Sprissler R , Burgess JL . Environ Res 2023 239 117297 Per- and polyfluoroalkyl substances (PFAS) are ubiquitous throughout the United States. Previous studies have shown PFAS exposure to be associated with a reduced immune response. However, the relationship between serum PFAS and antibody levels following SARS-CoV-2 infection or COVID-19 vaccination has not been examined. We examined differences in peak immune response and the longitudinal decline of antibodies following SARS-CoV-2 infection and COVID-19 vaccination by serum PFAS levels in a cohort of essential workers in the United States. We measured serum antibodies using an in-house semi-quantitative enzyme-linked immunosorbent assay (ELISA). Two cohorts contributed blood samples following SARS-CoV-2 infection or COVID-19 vaccination. We used linear mixed regression models, adjusting for age, race/ethnicity, gender, presence of chronic conditions, location, and occupation, to estimate differences in immune response with respect to serum PFAS levels. Our study populations included 153 unvaccinated participants that contributed 316 blood draws over a 14-month period following infection, and 860 participants and 2451 blood draws over a 12-month period following vaccination. Higher perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) concentrations were associated with a lower peak antibody response after infection (p = 0.009, 0.031, 0.015). Higher PFOS, perfluorooctanoic acid (PFOA), PFHxS, and PFNA concentrations were associated with slower declines in antibodies over time after infection (p = 0.003, 0.014, 0.026, 0.025). PFOA, PFOS, PFHxS, and PFNA serum concentrations prior to vaccination were not associated with differences in peak antibody response after vaccination or with differences in decline of antibodies over time after vaccination. These results suggest that elevated PFAS may impede potential immune response to SARS-CoV-2 infection by blunting peak antibody levels following infection; the same finding was not observed for immune response to vaccination. |
Humoral immune response to messenger RNA coronavirus disease 2019 vaccination among children aged 5-11 years in a multisite prospective cohort study, September 2021-September 2022
Lyski ZL , Porter C , Uhrlaub JL , Ellingson KD , Jeddy Z , Gwynn L , Rivers P , Sprissler R , Hegmann KT , Coughlin M , Fowlkes A , Hollister J , LeClair L , Mak J , Beitel SC , Fuller S , Grant L , Newes-Adeyi G , Yoo YM , Olsho L , Burgess JL , Caban-Martinez A , Yoon S , Britton A , Gaglani M , Lutrick K . Open Forum Infect Dis 2023 10 (8) ofad431 ![]() BACKGROUND: The PROTECT study is a longitudinal cohort study initiated in July 2021 with weekly testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 4 states: Arizona, Florida, exas, and Utah. This study aims to examine vaccine-elicited antibody response against postvaccination SARS-CoV-2 infections. METHODS: Children aged 5-11 years had serum collected 14-59 days after their second dose of monovalent Pfizer-BioNTech coronavirus disease 2019 messenger RNA vaccine. Vaccine-elicited antibodies were measured using the area under the curve (AUC) and end-point titer using enzyme-linked immunosorbent assay (receptor-binding domain [RBD] and S2) and surrogate neutralization assays against ancestral (WA1) and Omicron (BA.2). RESULTS: 79 vaccinated participants (33 [41.7%] female; median age, 8.8 years [standard deviation, 1.9 years]), 48 (60.8%) were from Tucson, Arizona; 64 (81.0%) were non-Hispanic white; 63 (80.8%) attended school in person; 68 (86.1%) did not have any chronic conditions; and 47 (59.5%) were infected after vaccination. Uninfected children had higher AUCs against WA1 (P = .009) and Omicron (P = .02). The geometric mean and surrogate neutralization titer above the limit of detection was 346.0 for WA1 and 39.7 for Omicron, an 8.7-fold decrease (P < .001). After adjustment of covariates in the WA1-specific model, we observed a 47% reduction in the odds of postvaccination infection for every standard deviation increase in RBD AUC (aOR, 0.53 [95% confidence interval, .29-.97) and a 69% reduction in the odds of infection for every 3-fold increase in RBD end titer (0.31 [.06-1.57]). CONCLUSIONS: Children with higher antibody levels experienced a lower incidence of postvaccination SARS-CoV-2 infection. |
Use of respiratory syncytial virus vaccines in adults aged ≥60 years: updated recommendations of the Advisory Committee on Immunization Practices - United States, 2024
Britton A , Roper LE , Kotton CN , Hutton DW , Fleming-Dutra KE , Godfrey M , Ortega-Sanchez IR , Broder KR , Talbot HK , Long SS , Havers FP , Melgar M . MMWR Morb Mortal Wkly Rep 2024 73 (32) 696-702 Respiratory syncytial virus (RSV) is a major cause of respiratory illness and hospitalization in older adults during fall and winter in the United States. The 2023-2024 RSV season was the first during which RSV vaccination was recommended for U.S. adults aged ≥60 years, using shared clinical decision-making. On June 26, 2024, the Advisory Committee on Immunization Practices voted to update this recommendation as follows: a single dose of any Food and Drug Administration-approved RSV vaccine (Arexvy [GSK]; Abrysvo [Pfizer]; or mResvia [Moderna]) is now recommended for all adults aged ≥75 years and for adults aged 60-74 years who are at increased risk for severe RSV disease. Adults who have previously received RSV vaccine should not receive another dose. This report summarizes the evidence considered for these updated recommendations, including postlicensure data on vaccine effectiveness and safety, and provides clinical guidance for the use of RSV vaccines in adults aged ≥60 years. These updated recommendations are intended to maximize RSV vaccination coverage among persons most likely to benefit, by clarifying who is at highest risk and by reducing implementation barriers associated with the previous shared clinical decision-making recommendation. Continued postlicensure monitoring will guide future recommendations. |
Systematic Review and Meta-Analysis of the Efficacy and Effectiveness of Pneumococcal Vaccines in Adults (preprint)
Farrar JL , Childs L , Ouattara M , Akhter F , Britton A , Pilishvili T , Kobayashi M . medRxiv 2022 07 The 13-valent pneumococcal conjugate vaccine (PCV13) and 23-valent pneumococcal polysaccharide vaccine (PPSV23) were previously recommended for adults in the United States. To help inform discussions on recently licensed 15- and 20-valent pneumococcal vaccine use among adults, we conducted a systematic review of PCV13 and PPSV23 efficacy or effectiveness. We conducted a search on PCV13 and PPSV23 efficacy or effectiveness (VE) studies against vaccine type (VT) invasive pneumococcal disease (IPD) and VT-pneumococcal pneumonia in adults. Nineteen studies were included: 13 on VT-IPD (four on PCV13, nine on PPSV23) and eight on VT- pneumococcal pneumonia (three on PCV13, four on PPSV23, one on PCV13 and PPSV23). One randomized-controlled trial (RCT) evaluated PCV13 and observed an efficacy of 75% and 45% against VT-IPD and VT-pneumococcal pneumonia, respectively. No RCTs reported PPSV23 efficacy. PCV13 effectiveness estimates against VTIPD ranged from 47% to 68%. Pooled PPSV23 effectiveness against VT-IPD was 45% (95% CI: 37%, 51%; I2=0%). PCV13 VE estimates against VT-pneumonia ranged from -2 to 46%. Pooled PPSV23 VE against VT-pneumococcal pneumonia was 18% (95% CI: -4%, 35%; I2=0%). Evidence suggests PCV13 and PPSV23 are effective against VT-IPD and VT-pneumococcal pneumonia in adults; this was used to inform PCV15 and PCV20 policy decisions. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Use of respiratory syncytial virus vaccines in older adults: Recommendations of the Advisory Committee on Immunization Practices - United States, 2023
Melgar M , Britton A , Roper LE , Talbot HK , Long SS , Kotton CN , Havers FP . MMWR Morb Mortal Wkly Rep 2023 72 (29) 793-801 Respiratory syncytial virus (RSV) is a cause of severe respiratory illness in older adults. In May 2023, the Food and Drug Administration approved the first vaccines for prevention of RSV-associated lower respiratory tract disease in adults aged ≥60 years. Since May 2022, the Advisory Committee on Immunization Practices (ACIP) Respiratory Syncytial Virus Vaccines Adult Work Group met at least monthly to review available evidence regarding the safety, immunogenicity, and efficacy of these vaccines among adults aged ≥60 years. On June 21, 2023, ACIP voted to recommend that adults aged ≥60 years may receive a single dose of an RSV vaccine, using shared clinical decision-making. This report summarizes the body of evidence considered for this recommendation and provides clinical guidance for the use of RSV vaccines in adults aged ≥60 years. RSV vaccines have demonstrated moderate to high efficacy in preventing RSV-associated lower respiratory tract disease and have the potential to prevent substantial morbidity and mortality among older adults; postmarketing surveillance will direct future guidance. |
Interim recommendations for use of bivalent mRNA COVID-19 vaccines for persons aged 6 months - United States, April 2023
Moulia DL , Wallace M , Roper LE , Godfrey M , Rosenblum HG , Link-Gelles R , Britton A , Daley MF , Meyer S , Fleming-Dutra KE , Oliver SE , Twentyman E . MMWR Morb Mortal Wkly Rep 2023 72 (24) 657-662 ![]() Throughout the national public health emergency declared in response to the COVID-19 pandemic, CDC, guided by the Advisory Committee on Immunization Practices (ACIP), has offered evidence-based recommendations for the use of COVID-19 vaccines in U.S. populations after each regulatory action by the Food and Drug Administration (FDA). During August 2022-April 2023, FDA amended its Emergency Use Authorizations (EUAs) to authorize the use of a single, age-appropriate, bivalent COVID-19 vaccine dose (i.e., containing components from the ancestral and Omicron BA.4/BA.5 strains in equal amounts) for all persons aged ≥6 years, use of bivalent COVID-19 vaccine doses for children aged 6 months-5 years, and additional bivalent doses for immunocompromised persons and adults aged ≥65 years (1). ACIP voted in September 2022 on the use of the bivalent vaccine, and CDC made recommendations after the September vote and subsequently, through April 2023, with input from ACIP. This transition to a single bivalent COVID-19 vaccine dose for most persons, with additional doses for persons at increased risk for severe disease, facilitates implementation of simpler, more flexible recommendations. Three COVID-19 vaccines are currently available for use in the United States and recommended by ACIP: 1) the bivalent mRNA Pfizer-BioNTech COVID-19 vaccine, 2) the bivalent mRNA Moderna COVID-19 vaccine, and 3) the monovalent adjuvanted, protein subunit-based Novavax COVID-19 vaccine.* As of August 31, 2022, monovalent mRNA vaccines based on the ancestral SARS-CoV-2 strain are no longer authorized for use in the United States (1). |
Systematic review and meta-analysis of the efficacy and effectiveness of pneumococcal vaccines in adults
Farrar JL , Childs L , Ouattara M , Akhter F , Britton A , Pilishvili T , Kobayashi M . Pathogens 2023 12 (5) New pneumococcal conjugate vaccines (PCVs), 15- and 20-valent (PCV15 and PCV20), have been licensed for use among U.S. adults based on safety and immunogenicity data compared with the previously recommended 13-valent PCV (PCV13) and 23-valent pneumococcal polysaccharide vaccines (PPSV23). We conducted a systematic review of the literature on PCV13 and PPSV23 efficacy (randomized controlled trials [RCTs]) or effectiveness (observational studies) against vaccine type (PCV13 type or PPSV23 type, respectively), invasive pneumococcal disease (IPD), and pneumococcal pneumonia (PP) in adults. We utilized the search strategy from a previous systematic review of the literature published during the period from January 2016 to April 2019, and updated the search through March 2022. The certainty of evidence was assessed using the Cochrane risk-of-bias 2.0 tool and the Newcastle-Ottawa scale. When feasible, meta-analyses were conducted. Of the 5085 titles identified, 19 studies were included. One RCT reported PCV13 efficacy of 75% (PCV13-type IPD) and 45% (PCV13-type PP). Three studies each reported PCV13 effectiveness against PCV13-type IPD (range 47% to 68%) and against PCV13-type PP (range 38% to 68%). The pooled PPSV23 effectiveness was 45% (95% CI: 37%, 51%) against PPSV23-type IPD (nine studies) and 18% (95% CI: -4%, 35%) against PPSV23-type PP (five studies). Despite the heterogeneity across studies, our findings suggest that PCV13 and PPSV23 protect against VT-IPD and VT-PP in adults. |
Effectiveness of booster doses of monovalent mRNA COVID-19 vaccine against symptomatic severe acute respiratory syndrome coronavirus 2 infection in children, adolescents, and adults during omicron subvariant BA.2/BA.2.12.1 and BA.4/BA.5 predominant periods
Ciesla AA , Wiegand RE , Smith ZR , Britton A , Fleming-Dutra KE , Miller J , Accorsi EK , Verani JR , Shang N , Derado G , Pilishvili T , Link-Gelles R . Open Forum Infect Dis 2023 10 (5) ofad187 ![]() BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.2/BA.2.12.1 and BA.4/BA.5 subvariants have mutations associated with increased capacity to evade immunity when compared with prior variants. We evaluated mRNA monovalent booster dose effectiveness among persons ≥5 years old during BA.2/BA.2.12.1 and BA.4/BA.5 predominance. METHODS: A test-negative, case-control analysis included data from 12 148 pharmacy SARS-CoV-2 testing sites nationwide for persons aged ≥5 years with ≥1 coronavirus disease-2019 (COVID-19)-like symptoms and a SARS-CoV-2 nucleic acid amplification test from April 2 to August 31, 2022. Relative vaccine effectiveness (rVE) was estimated comparing 3 doses of COVID-19 mRNA monovalent vaccine to 2 doses; for tests among persons ≥50 years, rVE estimates also compared 4 doses to 3 doses (≥4 months since third dose). RESULTS: A total of 760 986 test-positive cases and 817 876 test-negative controls were included. Among individuals ≥12 years, rVE of 3 versus 2 doses ranged by age group from 45% to 74% at 1-month post vaccination and waned to 0% by 5-7 months post vaccination during the BA.4/BA.5 period.Adults aged ≥50 years (fourth dose eligible) who received 4 doses were less likely to have symptomatic SARS-CoV-2 infection compared with those with 3 doses; this rVE remained >0% through at least 3 months since last dose. For those aged ≥65 years, rVE of 4 versus 3 doses 1-month post vaccination was higher during BA.2/BA.2.12.1 (rVE = 49%; 95% confidence interval [CI], 43%-53%) than BA.4/BA.5 (rVE = 40%; 95% CI, 36%-44%). In 50- to 64-year-olds, rVE estimates were similar. CONCLUSIONS: Monovalent mRNA booster doses provided additional protection against symptomatic SARS-CoV-2 infection during BA.2/BA.2.12.1 and BA.4/BA.5 subvariant circulation, but protection waned over time. |
Estimated effectiveness of JYNNEOS vaccine in preventing Mpox: A Multijurisdictional Case-Control Study - United States, August 19, 2022-March 31, 2023
Dalton AF , Diallo AO , Chard AN , Moulia DL , Deputy NP , Fothergill A , Kracalik I , Wegner CW , Markus TM , Pathela P , Still WL , Hawkins S , Mangla AT , Ravi N , Licherdell E , Britton A , Lynfield R , Sutton M , Hansen AP , Betancourt GS , Rowlands JV , Chai SJ , Fisher R , Danza P , Farley M , Zipprich J , Prahl G , Wendel KA , Niccolai L , Castilho JL , Payne DC , Cohn AC , Feldstein LR . MMWR Morb Mortal Wkly Rep 2023 72 (20) 553-558 As of March 31, 2023, more than 30,000 monkeypox (mpox) cases had been reported in the United States in an outbreak that has disproportionately affected gay, bisexual, and other men who have sex with men (MSM) and transgender persons (1). JYNNEOS vaccine (Modified Vaccinia Ankara vaccine, Bavarian Nordic) was approved by the Food and Drug Administration (FDA) in 2019 for the prevention of smallpox and mpox via subcutaneous injection as a 2-dose series (0.5 mL per dose, administered 4 weeks apart) (2). To expand vaccine access, an Emergency Use Authorization was issued by FDA on August 9, 2022, for dose-sparing intradermal injection of JYNNEOS as a 2-dose series (0.1 mL per dose, administered 4 weeks apart) (3). Vaccination was available to persons with known or presumed exposure to a person with mpox (postexposure prophylaxis [PEP]), as well as persons at increased risk for mpox or who might benefit from vaccination (preexposure mpox prophylaxis [PrEP]) (4). Because information on JYNNEOS vaccine effectiveness (VE) is limited, a matched case-control study was conducted in 12 U.S. jurisdictions,(†) including nine Emerging Infections Program sites and three Epidemiology and Laboratory Capacity sites,(§) to evaluate VE against mpox among MSM and transgender adults aged 18-49 years. During August 19, 2022-March 31, 2023, a total of 309 case-patients were matched to 608 control patients. Adjusted VE was 75.2% (95% CI = 61.2% to 84.2%) for partial vaccination (1 dose) and 85.9% (95% CI = 73.8% to 92.4%) for full vaccination (2 doses). Adjusted VE for full vaccination by subcutaneous, intradermal, and heterologous routes of administration was 88.9% (95% CI = 56.0% to 97.2%), 80.3% (95% CI = 22.9% to 95.0%), and 86.9% (95% CI = 69.1% to 94.5%), respectively. Adjusted VE for full vaccination among immunocompromised participants was 70.2% (95% CI = -37.9% to 93.6%) and among immunocompetent participants was 87.8% (95% CI = 57.5% to 96.5%). JYNNEOS is effective at reducing the risk for mpox. Because duration of protection of 1 versus 2 doses remains unknown, persons at increased risk for mpox exposure should receive the 2-dose series as recommended by the Advisory Committee on Immunization Practices (ACIP),(¶) regardless of administration route or immunocompromise status. |
Effectiveness of COVID-19 mRNA vaccines in preventing COVID-19-associated outpatient visits and hospitalizations among American indian and Alaska native persons, January-November 2021: A test-negative case-control analysis using surveillance data
Lutz CS , Hartman RM , Vigil DE , Britton A , Burrage AB , Campbell AP , Close RM , Desnoyers C , Dobson J , Garcia S , Halasa N , Honie E , Kobayashi M , McMorrow M , Mostafa HH , Parker D , Pohl K , Prill MM , Richards J , Roessler KC , Sutcliffe CG , Taylor K , Swango-Wilson A , Va P , Verani JR , Singleton RJ , Hammitt LL . Open Forum Infect Dis 2023 10 (4) ofad172 ![]() BACKGROUND: Despite the disproportionate morbidity and mortality expeHealth Equity and Health Disparitiesrienced by American Indian and Alaska Native (AI/AN) persons during the coronavirus disease 2019 (COVID-19) pandemic, few studies have reported vaccine effectiveness (VE) estimates among these communities. METHODS: We conducted a test-negative case-control analysis among AI/AN persons aged ≥12 years presenting for care from January 1, 2021, through November 30, 2021, to evaluate the effectiveness of mRNA COVID-19 vaccines against COVID-19-associated outpatient visits and hospitalizations. Cases and controls were patients with ≥1 symptom consistent with COVID-19-like illness; cases were defined as those test-positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and controls were defined as those test-negative for SARS-CoV-2. We used unconditional multivariable logistic regression to estimate VE, defined as 1 minus the adjusted odds ratio for vaccination among cases vs controls. RESULTS: The analysis included 207 cases and 267 test-negative controls. Forty-four percent of cases and 78% of controls received 2 doses of either BNT162b2 or mRNA-1273 vaccine. VE point estimates for 2 doses of mRNA vaccine were higher for hospitalized participants (94.6%; 95% CI, 88.0-97.6) than outpatient participants (86.5%; 95% CI, 63.0-95.0), but confidence intervals overlapped. CONCLUSIONS: Among AI/AN persons, mRNA COVID-19 vaccines were highly effective in preventing COVID-associated outpatient visits and hospitalizations. Maintaining high vaccine coverage, including booster doses, will reduce the burden of disease in this population. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jun 20, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure