Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-30 (of 122 Records) |
Query Trace: Bowen MD[original query] |
---|
Rotavirus vaccine effectiveness against severe acute gastroenteritis: 2009-2022
Diallo AO , Wikswo ME , Sulemana I , Sahni LC , Boom JA , Ramani S , Selvarangan R , Moffatt ME , Harrison CJ , Halasa N , Chappell J , Stewart L , Staat MA , Schlaudecker E , Quigley C , Klein EJ , Englund JA , Zerr DM , Weinberg GA , Szilagyi PG , Albertin C , Johnston SH , Williams JV , Michaels MG , Hickey RW , Curns AT , Honeywood M , Mijatovic-Rustempasic S , Esona MD , Bowen MD , Parashar UD , Gautam R , Mirza SA , Tate JE . Pediatrics 2024 BACKGROUND: Rotavirus was the leading cause of acute gastroenteritis among US children until vaccine introduction in 2006, after which, substantial declines in severe rotavirus disease occurred. We evaluated rotavirus vaccine effectiveness (VE) over 13 years (2009-2022). METHODS: We analyzed data from the New Vaccine Surveillance Network using a test-negative case-control design to estimate rotavirus VE against laboratory-confirmed rotavirus infections among children seeking care for acute gastroenteritis (≥3 diarrhea or ≥1 vomiting episodes within 24 hours) in the emergency department (ED) or hospital. Case-patients and control-patients were children whose stool specimens tested rotavirus positive or negative, respectively, by enzyme immunoassay or polymerase chain reaction assays. VE was calculated as (1-adjusted odds ratio)×100%. Adjusted odds ratios were calculated by multivariable unconditional logistic regression. RESULTS: Among 16 188 enrolled children age 8 to 59 months, 1720 (11%) tested positive for rotavirus. Case-patients were less often vaccinated against rotavirus than control-patients (62% versus 88%). VE for receiving ≥1 dose against rotavirus-associated ED visits or hospitalization was 78% (95% confidence interval [CI] 75%-80%). Stratifying by a modified Vesikari Severity Score, VE was 59% (95% CI 49%-67%), 80% (95% CI 77%-83%), and 94% (95% CI 90%-97%) against mild, moderately severe, and very severe disease, respectively. Rotavirus vaccines conferred protection against common circulating genotypes (G1P[8], G2P[4], G3P[8], G9P[8], and G12[P8]). VE was higher in children <3 years (73% to 88%); protection decreased as age increased. CONCLUSIONS: Rotavirus vaccines remain highly effective in preventing ED visits and hospitalizations in US children. |
Correlates of rotavirus vaccine shedding and seroconversion in a U.S. cohort of healthy infants
Burke RM , Payne DC , McNeal M , Conrey SC , Burrell AR , Mattison CP , Casey-Moore MC , Mijatovic-Rustempasic S , Gautam R , Esona MD , Thorman AW , Bowen MD , Parashar UD , Tate JE , Morrow AL , Staat MA . J Infect Dis 2024 BACKGROUND: Rotavirus is a leading cause of severe pediatric gastroenteritis; two highly effective vaccines are used in the US. We aimed to identify correlates of immune response to rotavirus vaccination in a US cohort. METHODS: PREVAIL is a birth cohort of 245 mother-child pairs enrolled 2017-2018 and followed for 2 years. Infant stool samples and symptom information were collected weekly. Shedding was defined as RT-PCR detection of rotavirus vaccine virus in stools collected 4-28 days after dose one. Seroconversion was defined as a threefold rise in IgA between the six-week and six-month blood draws. Correlates were analyzed using generalized estimating equations and logistic regression. RESULTS: Pre-vaccination IgG (OR=0.84, 95% CI [0.75-0.94] per 100-unit increase) was negatively associated with shedding. Shedding was also less likely among infants with a single-nucleotide polymorphism inactivating FUT2 antigen secretion ("non-secretors") with non-secretor mothers, versus all other combinations (OR 0.37 [0.16-0.83]). Of 141 infants with data, 105 (74%) seroconverted; 78 (77%) had shed vaccine virus following dose one. Pre-vaccination IgG and secretor status were significantly associated with seroconversion. Neither shedding nor seroconversion significantly differed by vaccine product. DISCUSSION: In this US cohort, pre-vaccination IgG and maternal and infant secretor status were associated with rotavirus vaccine response. |
Genetic diversity of G9, G3, G8 and G1 rotavirus group A strains circulating among children with acute gastroenteritis in Vietnam from 2016 to 2021
Le LKT , Chu MNT , Tate JE , Jiang B , Bowen MD , Esona MD , Gautam R , Jaimes J , Pham TPT , Nguyen HT , Anh DD , Trang NV , Parashar U . Infect Genet Evol 2024 105566 Rotavirus group A (RVA) is the most common cause of severe childhood diarrhea worldwide. The introduction of rotavirus vaccination programs has contributed to a reduction in hospitalizations and mortality caused by RVA. From 2016 to 21, we conducted surveillance to monitor RVA prevalence and genotype distribution in Nam Dinh and Thua Thien Hue (TT Hue) provinces where a pilot Rotavin-M1 vaccine (Vietnam) implementation took place from 2017 to 20. Out of 6626 stool samples, RVA was detected in 2164 (32.6%) by ELISA. RT-PCR using type-specific primers were used to determine the G and P genotypes of RVA-positive specimens. Whole genome sequences of a subset of 52 specimens randomly selected from 2016 to 21 were mapped using next-generation sequencing. From 2016 to 21, the G9, G3 and G8 strains dominated, with detected frequencies of 39%, 23%, and 19%, respectively; of which, the most common genotypes identified were G9P[8], G3P[8] and G8P[8]. G1 strains re-emerged in Nam Dinh and TT Hue (29.5% and 11.9%, respectively) from 2020 to 2021. G3 prevalence decreased from 74% to 20% in TT Hue and from 21% to 13% in Nam Dinh province between 2017 and 2021. The G3 strains consisted of 52% human typical G3 (hG3) and 47% equine-like G3 (eG3). Full genome analysis showed substantial diversity among the circulating G3 strains with different backgrounds relating to equine and feline viruses. G9 prevalence decreased sharply from 2016 to 2021 in both provinces. G8 strains peaked during 2019-2020 in Nam Dinh and TT Hue provinces (68% and 46%, respectively). Most G8 and G9 strains had no genetic differences over the surveillance period with very high nucleotide similarities of 99.2-99.9% and 99.1-99.7%, respectively. The G1 strains were not derived from the RVA vaccine. Changes in the genotype distribution and substantial diversity among circulating strains were detected throughout the surveillance period and differed between the two provinces. Determining vaccine effectiveness against circulating strains over time will be important to ensure that observed changes are due to natural secular variation and not from vaccine pressure. |
Two rotavirus outbreaks caused by genotype G2P[4] at large retirement communities: cohort studies.
Cardemil CV , Cortese MM , Medina-Marino A , Jasuja S , Desai R , Leung J , Rodriguez-Hart C , Villarruel G , Howland J , Quaye O , Tam KI , Bowen MD , Parashar UD , Gerber SI . Ann Intern Med 2012 157 (9) 621-31 BACKGROUND: Outbreaks of rotavirus gastroenteritis in elderly adults are reported infrequently but are often caused by G2P[4] strains. In 2011, outbreaks were reported in 2 Illinois retirement facilities. OBJECTIVE: To implement control measures, determine the extent and severity of illness, and assess risk factors for disease among residents and employees. DESIGN: Cohort studies using surveys and medical chart abstraction. SETTING: Two large retirement facilities in Cook County, Illinois. PATIENTS: Residents and employees at both facilities and community residents with rotavirus disease. MEASUREMENTS: Attack rates, hospitalization rates, and rotavirus genotype. RESULTS: At facility A, 84 of 324 residents (26%) were identified with clinical or laboratory-confirmed rotavirus gastroenteritis (median age, 84 years) and 11 (13%) were hospitalized. The outbreak lasted 7 weeks. At facility B, 90 case patients among 855 residents (11%) were identified (median age, 88 years) and 19 (21%) were hospitalized. The facility B outbreak lasted 9.3 weeks. Ill employees were identified at both locations. In each facility, attack rates seemed to differ by residential setting, with the lowest rates among those in more separated settings or with high baseline level of infection control measures. The causative genotype for both outbreaks was G2P[4]. Some individuals shed virus detected by enzyme immunoassay or genotyping reverse transcription polymerase chain reaction for at least 35 days. G2P[4] was also identified in 17 of 19 (89%) samples from the older adult community but only 15 of 40 (38%) pediatric samples. LIMITATION: Medical or cognitive impairment among residents limited the success of some interviews. CONCLUSION: Rotavirus outbreaks can occur among elderly adults in residential facilities and can result in considerable morbidity. Among older adults, G2P[4] may be of unique importance. Health professionals should consider rotavirus as a cause of acute gastroenteritis in adults. PRIMARY FUNDING SOURCE: None. |
Novel NSP1 genotype characterised in an African camel G8P[11] rotavirus strain.
Jere KC , Esona MD , Ali YH , Peenze I , Roy S , Bowen MD , Saeed IK , Khalafalla AI , Nyaga MM , Mphahlele J , Steele D , Seheri ML . Infect Genet Evol 2014 21 58-66 Animal-human interspecies transmission is thought to play a significant role in influencing rotavirus strain diversity in humans. Proving this concept requires a better understanding of the complete genetic constellation of rotaviruses circulating in various animal species. However, very few whole genomes of animal rotaviruses, especially in developing countries, are available. In this study, complete genetic configuration of the first African camel rotavirus strain (RVA/Camel-wt/SDN/MRC-DPRU447/2002/G8P[11]) was assigned a unique G8-P[11]-I2-R2-C2-M2-A18-N2-T6-E2-H3 genotype constellation that has not been reported in other ruminants. It contained a novel NSP1 genotype (genotype A18). The evolutionary dynamics of the genome segments of strain MRC-DPRU447 were rather complex compared to those found in other camelids. Its genome segments 1, 3, 7-10 were closely related (>93% nucleotide identity) to those of human-animal reassortant strains like RVA/Human-tc/ITA/PA169/1988/G6P[14] and RVA/Human-wt/HUN/Hun5/1997/G6P[14], segments 4, 6 and 11 shared common ancestry (>95% nucleotide identity) with bovine rotaviruses like strains RVA/Cow-wt/CHN/DQ-75/2008/G10P[11] and RVA/Cow-wt/KOR/KJ19-2/XXXX/G6P[7], whereas segment 2 was closely related (94% nucleotide identity) to guanaco rotavirus strain RVA/Guanaco-wt/ARG/Rio_Negro/1998/G8P[1]. Its genetic backbone consisted of DS-1-like, AU-1-like, artiodactyl-like and a novel A18 genotype. This suggests that strain MRC-DPRU447 potentially emerged through multiple reassortment events between several mammalian rotaviruses of at least two genogroups or simply strain MRC-DPRU447 display a unique progenitor genotypes. Close relationship between some of the genome segments of strain MRC-DPRU447 to human rotaviruses suggests previous occurrence of reassortment processes combined with interspecies transmission between humans and camels. The whole genome data for strain MRC-DPRU447 adds to the much needed animal rotavirus data from Africa which is limited at the moment. |
Role of pre-farrow natural planned exposure of gilts in shaping the passive antibody response to rotavirus a in piglets
Kumar D , Anderson Reever AV , Pittman JS , Springer NL , Mallen K , Roman-Sosa G , Sangewar N , Casey-Moore MC , Bowen MD , Mwangi W , Marthaler DG . Vaccines (Basel) 2023 11 (12) Natural planned exposure (NPE) remains one of the most common methods in swine herds to boost lactogenic immunity against rotaviruses. However, the efficacy of NPE protocols in generating lactogenic immunity has not been investigated before. A longitudinal study was conducted to investigate the dynamics of genotype-specific antibody responses to different doses (3, 2 and 1) of Rotavirus A (RVA) NPE (genotypes G4, G5, P[7] and P[23]) in gilts and the transfer of lactogenic immunity to their piglets. Group 1 gilts received three doses of NPE at 5, 4 and 3 weeks pre-farrow (WPF), group 2 received two doses at 5 and 3 WPF, group 3 received one dose at 5 WPF, and group 4 received no NPE (control group). VP7 (G4 and G5) and truncated VP4* (P[7] and P[23]) antigens of RVA were expressed in mammalian and bacterial expression systems, respectively, and used to optimize indirect ELISAs to determine antibody levels against RVA in gilts and piglets. In day-0 colostrum samples, group 1 had significantly higher IgG titers compared to the control group for all four antigens, and either significantly or numerically higher IgG titers than groups 2 and 3. Group 1 also had significantly higher colostrum IgA levels than the control group for all antigens (except G4), and either significantly or numerically higher IgA levels compared to groups 2 and 3. In piglet serum, group 1 piglets had higher IgG titers for all four antigens at day 0 than the other groups. Importantly, RVA NPE stimulated antibodies in all groups regardless of the treatment doses and prevented G4, G5, P[7] and P[23] RVA fecal shedding prior to weaning in piglets in the absence of viral challenge. The G11 and P[34] RVA genotypes detected from pre-weaning piglets differed at multiple amino acid positions with parent NPE strains. In conclusion, the results of this study suggest that the group 1 NPE regimen (three doses of NPE) resulted in the highest anti-RVA antibody (IgG and IgA) levels in the colostrum/milk, and the highest IgG levels in piglet serum. |
Coding-complete genome sequences of rotavirus A reference strains EDIM, Ph158, and CC425
Casey-Moore MC , Katz E , Mijatovic-Rustempasic S , Jaimes J , Gautam R , Bowen MD . Microbiol Resour Announc 2023 12 (11) e0063023 This study reports the coding-complete genome sequences of three rotavirus A (RVA) reference strains previously adapted in tissue culture: RVA/Mouse-tc/USA/EDIM/XXXX/G16P[16] with a G16-P[16]-I7-R7-C7-M8-A7-N7-T10-E7-H9 genotype constellation, RVA/Human-tc/USA/Ph158/1998/G9P[6] with a G9-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2 genotype constellation, and RVA/Human-tc/USA/CC425/1998/G3P[9] with a G3-P[9]-I2-R2-C2-M2-A3-N2-T1-E2-H3 genotype constellation. |
The CDC domestic mpox response - United States, 2022-2023
McQuiston JH , Braden CR , Bowen MD , McCollum AM , McDonald R , Carnes N , Carter RJ , Christie A , Doty JB , Ellington S , Fehrenbach SN , Gundlapalli AV , Hutson CL , Kachur RE , Maitland A , Pearson CM , Prejean J , Quilter LAS , Rao AK , Yu Y , Mermin J . MMWR Morb Mortal Wkly Rep 2023 72 (20) 547-552 Monkeypox (mpox) is a serious viral zoonosis endemic in west and central Africa. An unprecedented global outbreak was first detected in May 2022. CDC activated its emergency outbreak response on May 23, 2022, and the outbreak was declared a Public Health Emergency of International Concern on July 23, 2022, by the World Health Organization (WHO),* and a U.S. Public Health Emergency on August 4, 2022, by the U.S. Department of Health and Human Services.(†) A U.S. government response was initiated, and CDC coordinated activities with the White House, the U.S. Department of Health and Human Services, and many other federal, state, and local partners. CDC quickly adapted surveillance systems, diagnostic tests, vaccines, therapeutics, grants, and communication systems originally developed for U.S. smallpox preparedness and other infectious diseases to fit the unique needs of the outbreak. In 1 year, more than 30,000 U.S. mpox cases were reported, more than 140,000 specimens were tested, >1.2 million doses of vaccine were administered, and more than 6,900 patients were treated with tecovirimat, an antiviral medication with activity against orthopoxviruses such as Variola virus and Monkeypox virus. Non-Hispanic Black (Black) and Hispanic or Latino (Hispanic) persons represented 33% and 31% of mpox cases, respectively; 87% of 42 fatal cases occurred in Black persons. Sexual contact among gay, bisexual, and other men who have sex with men (MSM) was rapidly identified as the primary risk for infection, resulting in profound changes in our scientific understanding of mpox clinical presentation, pathogenesis, and transmission dynamics. This report provides an overview of the first year of the response to the U.S. mpox outbreak by CDC, reviews lessons learned to improve response and future readiness, and previews continued mpox response and prevention activities as local viral transmission continues in multiple U.S. jurisdictions (Figure). |
Coding-complete genome sequences of G6P[14] rotavirus strain detected in a human stool specimen within the United States
Casey-Moore MC , Mijatovic-Rustempasic S , Jaimes J , Perkins C , Riley AM , Cortese MM , Gautam R , Bowen MD . Microbiol Resour Announc 2023 12 (6) e0000823 In this study, we report the detection of a G6P[14] rotavirus strain from a human stool sample within the United States. The full genotype constellation of the G6P[14] strain was identified as G6-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3. |
Histo-Blood Group Antigen Null Phenotypes Associated With a Decreased Risk of Clinical Rotavirus Vaccine Failure Among Children <2 Years of Age Participating in the Vaccine Impact on Diarrhea in Africa (VIDA) Study in Kenya, Mali, and the Gambia
Schwartz LM , Oshinsky J , Reymann M , Esona MD , Bowen MD , Jahangir Hossain M , Zaman SMA , Jones JCM , Antonio M , Badji H , Sarwar G , Sow SO , Sanogo D , Keita AM , Tamboura B , Traoré A , Onwuchekwa U , Omore R , Verani JR , Awuor AO , Ochieng JB , Juma J , Ogwel B , Parashar UD , Tate JE , Kasumba IN , Tennant SM , Neuzil KM , Rowhani-Rahbar A , Elizabeth Halloran M , Atmar RL , Pasetti MF , Kotloff KL . Clin Infect Dis 2023 76 S153-s161 BACKGROUND: Previously studied risk factors for rotavirus vaccine failure have not fully explained reduced rotavirus vaccine effectiveness in low-income settings. We assessed the relationship between histo-blood group antigen (HBGA) phenotypes and clinical rotavirus vaccine failure among children <2 years of age participating in the Vaccine Impact on Diarrhea in Africa Study in 3 sub-Saharan African countries. METHODS: Saliva was collected and tested for HBGA phenotype in children who received rotavirus vaccine. The association between secretor and Lewis phenotypes and rotavirus vaccine failure was examined overall and by infecting rotavirus genotype using conditional logistic regression in 218 rotavirus-positive cases with moderate-to-severe diarrhea and 297 matched healthy controls. RESULTS: Both nonsecretor and Lewis-negative phenotypes (null phenotypes) were associated with decreased rotavirus vaccine failure across all sites (matched odds ratio, 0.30 [95% confidence interval: 0.16-0.56] or 0.39 [0.25-0.62], respectively]. A similar decrease in risk against rotavirus vaccine failure among null HBGA phenotypes was observed for cases with P[8] and P[4] infection and their matched controls. While we found no statistically significant association between null HBGA phenotypes and vaccine failure among P[6] infections, the matched odds ratio point estimate for Lewis-negative individuals was >4. CONCLUSIONS: Our study demonstrated a significant relationship between null HBGA phenotypes and decreased rotavirus vaccine failure in a population with P[8] as the most common infecting genotype. Further studies are needed in populations with a large burden of P[6] rotavirus diarrhea to understand the role of host genetics in reduced rotavirus vaccine effectiveness. |
Aetiology and incidence of diarrhoea requiring hospitalisation in children under 5 years of age in 28 low-income and middle-income countries: findings from the Global Pediatric Diarrhea Surveillance network
Cohen AL , Platts-Mills JA , Nakamura T , Operario DJ , Antoni S , Mwenda JM , Weldegebriel G , Rey-Benito G , deOliveira LH , Ortiz C , Daniels DS , Videbaek D , Singh S , Njambe E , Sharifuzzaman M , Grabovac V , Nyambat B , Logronio J , Armah G , Dennis FE , Seheri ML , Magagula N , Mphahlele J , Fumian TM , Maciel ITA , GagliardiLeite JP , Esona MD , Bowen MD , Samoilovich E , Semeiko G , Abraham D , Giri S , Praharaj I , Kang G , Thomas S , Bines J , Liu N , Kyu HH , Doxey M , RogawskiMcQuade ET , McMurry TL , Liu J , Houpt ER , Tate JE , Parashar UD , Serhan F . BMJ Glob Health 2022 7 (9) INTRODUCTION: Diarrhoea remains a leading cause of child morbidity and mortality. Systematically collected and analysed data on the aetiology of hospitalised diarrhoea in low-income and middle-income countries are needed to prioritise interventions. METHODS: We established the Global Pediatric Diarrhea Surveillance network, in which children under 5 years hospitalised with diarrhoea were enrolled at 33 sentinel surveillance hospitals in 28 low-income and middle-income countries. Randomly selected stool specimens were tested by quantitative PCR for 16 causes of diarrhoea. We estimated pathogen-specific attributable burdens of diarrhoeal hospitalisations and deaths. We incorporated country-level incidence to estimate the number of pathogen-specific deaths on a global scale. RESULTS: During 2017-2018, 29 502 diarrhoea hospitalisations were enrolled, of which 5465 were randomly selected and tested. Rotavirus was the leading cause of diarrhoea requiring hospitalisation (attributable fraction (AF) 33.3%; 95% CI 27.7 to 40.3), followed by Shigella (9.7%; 95% CI 7.7 to 11.6), norovirus (6.5%; 95% CI 5.4 to 7.6) and adenovirus 40/41 (5.5%; 95% CI 4.4 to 6.7). Rotavirus was the leading cause of hospitalised diarrhoea in all regions except the Americas, where the leading aetiologies were Shigella (19.2%; 95% CI 11.4 to 28.1) and norovirus (22.2%; 95% CI 17.5 to 27.9) in Central and South America, respectively. The proportion of hospitalisations attributable to rotavirus was approximately 50% lower in sites that had introduced rotavirus vaccine (AF 20.8%; 95% CI 18.0 to 24.1) compared with sites that had not (42.1%; 95% CI 33.2 to 53.4). Globally, we estimated 208 009 annual rotavirus-attributable deaths (95% CI 169 561 to 259 216), 62 853 Shigella-attributable deaths (95% CI 48 656 to 78 805), 36 922 adenovirus 40/41-attributable deaths (95% CI 28 469 to 46 672) and 35 914 norovirus-attributable deaths (95% CI 27 258 to 46 516). CONCLUSIONS: Despite the substantial impact of rotavirus vaccine introduction, rotavirus remained the leading cause of paediatric diarrhoea hospitalisations. Improving the efficacy and coverage of rotavirus vaccination and prioritising interventions against Shigella, norovirus and adenovirus could further reduce diarrhoea morbidity and mortality. |
Rotavirus vaccine impact within an integrated healthcare delivery system in the United States
Burke RM , Tate JE , Groom H , Parashar UD , Mattison CP , Donald J , Salas SB , Naleway AL , Lee MH , Dickerson JF , Biggs C , Tsaknaridis L , Bowen MD , Schmidt M , Hall AJ . J Pediatric Infect Dis Soc 2022 11 (12) 586-589 We assessed rotavirus vaccine impact using data on acute gastroenteritis (AGE) encounters within an integrated healthcare delivery system during 2000 - 2018. Following rotavirus vaccine introduction, all-cause AGE rates among children <5 years declined by 36% (95% CI: 32-40%) for outpatient and 54% (95% CI: 46-60%) for inpatient encounters. |
Rotavirus Strain Trends in United States, 2009-2016: Results from the National Rotavirus Strain Surveillance System (NRSSS).
Mijatovic-Rustempasic S , Jaimes J , Perkins C , Ward ML , Esona MD , Gautam R , Lewis J , Sturgeon M , Panjwani J , Bloom GA , Miller S , Reisdorf E , Riley AM , Pence MA , Dunn J , Selvarangan R , Jerris RC , DeGroat D , Parashar UD , Cortese MM , Bowen MD . Viruses 2022 14 (8) Before the introduction of vaccines, group A rotaviruses (RVA) were the leading cause of acute gastroenteritis in children worldwide. The National Rotavirus Strain Surveillance System (NRSSS) was established in 1996 by the Centers for Disease Control and Prevention (CDC) to perform passive RVA surveillance in the USA. We report the distribution of RVA genotypes collected through NRSSS during the 2009-2016 RVA seasons and retrospectively examine the genotypes detected through the NRSSS since 1996. During the 2009-2016 RVA seasons, 2134 RVA-positive fecal specimens were sent to the CDC for analysis of the VP7 and VP4 genes by RT-PCR genotyping assays and sequencing. During 2009-2011, RVA genotype G3P[8] dominated, while G12P[8] was the dominant genotype during 2012-2016. Vaccine strains were detected in 1.7% of specimens and uncommon/unusual strains, including equine-like G3P[8] strains, were found in 1.9%. Phylogenetic analyses showed limited VP7 and VP4 sequence variation within the common genotypes with 1-3 alleles/lineages identified per genotype. A review of 20 years of NRSSS surveillance showed two changes in genotype dominance, from G1P[8] to G3P[8] and then G3P[8] to G12P[8]. A better understanding of the long-term effects of vaccine use on epidemiological and evolutionary dynamics of circulating RVA strains requires continued surveillance. |
Diversity of rotavirus strains circulating in Haiti before and after introduction of monovalent vaccine.
Lucien MAB , Esona MD , Pierre M , Joseph G , Rivire C , Leshem E , Aliabadi N , Desormeaux AM , Andre-Alboth J , Fitter DL , Grant-Greene Y , Tate J , Boncy J , Patel R , Burnett E , Juin S , Parashar UD , Bowen MD . IJID Reg 2022 4 146-151 BACKGROUND: Haiti introduced a monovalent human group A rotavirus (RVA) vaccine (Rotarix) into its routine infant immunization program in April 2014. The goal of the surveillance program was to characterize RVA strains circulating in Haiti before and after RVA vaccine introduction. METHODS: Stool samples were collected from children <5 years old presenting with acute gastroenteritis at 16 hospitals in Haiti. RVA antigen enzyme immunoassay (EIA) testing was performed, and G and P genotypes were determined for positive specimens. In this study, genotype data for samples collected from May 2012 through April 2014 (the pre-vaccine introduction era) and May 2014 through July 2019 (post-vaccine introduction era) were analyzed. RESULTS: A total of 809 specimens were tested by the Centers for Disease Control and Prevention. During the pre-vaccine introduction era (May 2012 through April 2014), G12P[8] was the predominant genotype, detected in 88-94% of specimens. There was a high prevalence of the equine-like G3P[8] genotype among Haitian children with RVA after vaccine introduction. CONCLUSIONS: The predominance of equine-like G3P[8] in three of five RVA seasons post-vaccine introduction suggests possible vaccine-specific selection pressure in Haiti. These temporal variations in RVA genotype predominance will require continued monitoring in Haiti as the vaccination program continues. |
Understanding Variation in Rotavirus Vaccine Effectiveness Estimates in the United States: The Role of Rotavirus Activity and Diagnostic Misclassification.
Amin AB , Lash TL , Tate JE , Waller LA , Wikswo ME , Parashar UD , Stewart LS , Chappell JD , Halasa NB , Williams JV , Michaels MG , Hickey RW , Klein EJ , Englund JA , Weinberg GA , Szilagyi PG , Staat MA , McNeal MM , Boom JA , Sahni LC , Selvaragan R , Harrison CJ , Moffatt ME , Schuster JE , Pahud BA , Weddle GM , Azimi PH , Johnston SH , Payne DC , Bowen MD , Lopman BA . Epidemiology 2022 33 (5) 660-668 BACKGROUND: Estimates of rotavirus vaccine effectiveness (VE) in the U.S. appear higher in years with more rotavirus activity. We hypothesized rotavirus VE is constant over time but appears to vary as a function of temporal variation in local rotavirus cases and/or misclassified diagnoses. METHODS: We analyzed 6 years of data from eight U.S. surveillance sites on 8-59-month olds with acute gastroenteritis symptoms. Children's stool samples were tested via enzyme immunoassay (EIA); rotavirus-positive results were confirmed with molecular testing at the US Centers for Disease Control and Prevention (CDC). We defined rotavirus gastroenteritis cases by either positive on-site EIA results alone or positive EIA with CDC confirmation. For each case definition, we estimated VE against any rotavirus gastroenteritis, moderate-to-severe disease, and hospitalization using two mixed-effect regression models: the first including year plus a year-vaccination interaction, and the second including annual percent of rotavirus positive tests plus a percent positive-vaccination interaction. We used multiple overimputation to bias-adjust for misclassification of cases defined by positive EIA alone. RESULTS: Estimates of annual rotavirus VE against all outcomes fluctuated temporally, particularly when we defined cases by on-site EIA alone and used a year-vaccination interaction. Use of confirmatory testing to define cases reduced, but did not eliminate, fluctuations. Temporal fluctuations in VE estimates further attenuated when we used a percent positive-vaccination interaction. Fluctuations persisted until bias-adjustment for diagnostic misclassification. CONCLUSIONS: Both controlling for time-varying rotavirus activity and bias-adjusting for diagnostic misclassification are critical for estimating the most valid annual rotavirus VE. |
Risk-Factors for Exposure Associated With SARS-CoV-2 Detection After Recent Known or Potential COVID-19 Exposures Among Patients Seeking Medical Care at a Large Urban, Public Hospital in Fulton County, Georgia - A Cross-Sectional Investigation.
Smith-Jeffcoat SE , Sleweon S , Koh M , Khalil GM , Schechter MC , Rebolledo PA , Kasinathan V , Hoffman A , Rossetti R , Shragai T , O'Laughlin K , Espinosa CC , Bankamp B , Bowen MD , Paulick A , Gargis AS , Folster JM , da Silva J , Biedron C , Stewart RJ , Wang YF , Kirking HL , Tate JE . Front Public Health 2022 10 809356 We aimed to describe frequency of COVID-19 exposure risk factors among patients presenting for medical care at an urban, public hospital serving mostly uninsured/Medicare/Medicaid clients and risk factors associated with SARS-CoV-2 infection. Consenting, adult patients seeking care at a public hospital from August to November 2020 were enrolled in this cross-sectional investigation. Saliva, anterior nasal and nasopharyngeal swabs were collected and tested for SARS-CoV-2 using RT-PCR. Participant demographics, close contact, and activities ≤14 days prior to enrollment were collected through interview. Logistic regression was used to identify risk factors associated with testing positive for SARS-CoV-2. Among 1,078 participants, 51.8% were male, 57.0% were aged ≥50 years, 81.3% were non-Hispanic Black, and 7.6% had positive SARS-CoV-2 tests. Only 2.7% reported COVID-19 close contact ≤14 days before enrollment; this group had 6.79 adjusted odds of testing positive (95%CI = 2.78-16.62) than those without a reported exposure. Among participants who did not report COVID-19 close contact, working in proximity to ≥10 people (adjusted OR = 2.17; 95%CI = 1.03-4.55), choir practice (adjusted OR = 11.85; 95%CI = 1.44-97.91), traveling on a plane (adjusted OR = 5.78; 95%CI = 1.70-19.68), and not participating in an essential indoor activity (i.e., grocery shopping, public transit use, or visiting a healthcare facility; adjusted OR = 2.15; 95%CI = 1.07-4.30) were associated with increased odds of testing positive. Among this population of mostly Black, non-Hispanic participants seeking care at a public hospital, we found several activities associated with testing positive for SARS-CoV-2 infection in addition to close contact with a case. Understanding high-risk activities for SARS-CoV-2 infection among different communities is important for issuing awareness and prevention strategies. |
Whole genome analysis of rotavirus strains circulating in Benin before vaccine introduction, 2016-2018.
Agbla JM , Esona MD , Jaimes J , Gautam R , Agbankpé AJ , Katz E , Dougnon TV , Capo-Chichi A , Ouedraogo N , Razack O , Bankolé HS , Bowen MD . Virus Res 2022 313 198715 Species A Rotaviruses (RVA) still play a major role in causing acute diarrhea in children under five years old worldwide. Currently, an 11-gene classification system is used to designate the full genotypic constellations of circulating strains. Viral proteins and non-structural proteins in the order VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 are represented by the genotypes Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx, respectively. In Benin, ROTAVAC® vaccine was introduced into the Expanded Programme on Immunization in December 2019. To monitor circulating RVA strains for changes that may affect vaccine performance, in-depth analysis of strains prior to vaccine introduction are needed. Here we report, the whole-gene characterization (11 ORFs) for 72 randomly selected RVA strains of common and unusual genotypes collected in Benin from the 2016-2018 seasons. The sequenced strains were 15 G1P[8], 20 G2P[4], 5 G9P[8], 14 G12P[8], 9 G3P[6], 2 G1P[6], 3 G2P[6], 2 G9P[4], 1 G12P[6], and 1 G1G9P[8]/P[4]. The study strains exhibited two genetic constellations designed as Wa-like G1/G9/G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and DS-1-like G2/G3/G12-P[4]/P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Genotype G9P[4] strains possessed a DS-1-like genetic constellation with an E6 NSP4 gene, G9-P[4]-I2-R2-C2-M2-A2-N2-T2-E6-H2. The mixed genotype showed both Wa-like and DS-1-like profiles with a T6 NSP3 gene G1/G9P[8]/[4]-I1/I2-R1/R2-C1/C2-M1/M2-A1/A2-N1/N2-T1/T6-E1/E6-H1/H2. At the allelic level, the analysis of the Benin strains, reference strains (with known alleles), vaccine strains (with known alleles) identified 2-13 and 1-17 alleles for DS-1-like and Wa-like strains, respectively. Most of the study strains clustered into previously defined alleles, but we defined 3 new alleles for the VP7 (G3=1 new allele and G12=2 new alleles) and VP4 (P[4]=1 new allele and P[6]=2 new alleles) genes which formed the basis of the VP7 and VP4 gene clusters, respectively. For the remaining 9 genes, 0-6 new alleles were identified for both Wa-like and DS-1-like strains. This analysis of whole genome sequences of RVA strains circulating in Benin described genetic point mutations and reassortment events as well as novel alleles. Further detailed studies on these new alleles are needed and these data can also provide a baseline for studies on RVA in the post-vaccination period. |
Specimen self-collection for SARS-CoV-2 testing: Patient performance and preferences-Atlanta, Georgia, August-October 2020.
O'Laughlin K , Espinosa CC , Smith-Jeffcoat SE , Koh M , Khalil GM , Hoffman A , Rebolledo PA , Schechter MC , Stewart RJ , da Silva J , Biedron C , Bankamp B , Folster J , Gargis AS , Bowen MD , Paulick A , Wang YF , Tate JE , Kirking HL . PLoS One 2022 17 (3) e0264085 Self-collected specimens can expand access to SARS-CoV-2 testing. At a large inner-city hospital 1,082 participants self-collected saliva and anterior nasal swab (ANS) samples before healthcare workers collected nasopharyngeal swab (NPS) samples on the same day. To characterize patient preferences for self-collection, this investigation explored ability, comfort, and ease of ANS and saliva self-collection for SARS-CoV-2 testing along with associated patient characteristics, including medical history and symptoms of COVID-19. With nearly all participants successfully submitting a specimen, favorable ratings from most participants (at least >79% in ease and comfort), and equivocal preference between saliva and ANS, self-collection is a viable SARS-CoV-2 testing option. |
Comparative genomic analysis of genogroup 1 and genogroup 2 rotaviruses circulating in seven US cities, 2014-2016.
Esona MD , Gautam R , Katz E , Jaime J , Ward ML , Wikswo ME , Betrapally NS , Rustempasic SM , Selvarangan R , Harrison CJ , Boom JA , Englund J , Klein EJ , Staat MA , McNeal MM , Halasa N , Chappell J , Weinberg GA , Payne DC , Parashar UD , Bowen MD . Virus Evol 2021 7 (1) veab023 For over a decade, the New Vaccine Surveillance Network (NVSN) has conducted active rotavirus (RVA) strain surveillance in the USA. The evolution of RVA in the post-vaccine introduction era and the possible effects of vaccine pressure on contemporary circulating strains in the USA are still under investigation. Here, we report the whole-gene characterization (eleven ORFs) for 157 RVA strains collected at seven NVSN sites during the 2014 through 2016 seasons. The sequenced strains included 52 G1P[8], 47 G12P[8], 18 G9P[8], 24 G2P[4], 5 G3P[6], as well as 7 vaccine strains, a single mixed strain (G9G12P[8]), and 3 less common strains. The majority of the single and mixed strains possessed a Wa-like backbone with consensus genotype constellation of G1/G3/G9/G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while the G2P[4], G3P[6], and G2P[8] strains displayed a DS-1-like genetic backbone with consensus constellation of G2/G3-P[4]/P[6]/P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Two intergenogroup reassortant G1P[8] strains were detected that appear to be progenies of reassortment events between Wa-like G1P[8] and DS-1-like G2P[4] strains. Two Rotarix(®) vaccine (RV1) and two RV5 derived (vd) reassortant strains were detected. Phylogenetic and similarity matrices analysis revealed 2-11 sub-genotypic allelic clusters among the genes of Wa- and DS-1-like strains. Most study strains clustered into previously defined alleles. Amino acid (AA) substitutions occurring in the neutralization epitopes of the VP7 and VP4 proteins characterized in this study were mostly neutral in nature, suggesting that these RVA proteins were possibly under strong negative or purifying selection in order to maintain competent and actual functionality, but fourteen radical (AA changes that occur between groups) AA substitutions were noted that may allow RVA strains to gain a selective advantage through immune escape. The tracking of RVA strains at the sub-genotypic allele constellation level will enhance our understanding of RVA evolution under vaccine pressure, help identify possible mechanisms of immune escape, and provide valuable information for formulation of future RVA vaccines. |
Development of a real-time reverse transcription-PCR assay to detect and quantify group A rotavirus equine-like G3 strains.
Katz EM , Esona MD , Gautam R , Bowen MD . J Clin Microbiol 2021 59 (11) Jcm0260220 Since 2013, group A rotavirus strains characterized as novel DS-1-like inter-genogroup reassortant 'equine-like G3' strains have emerged and spread across five continents among human populations in at least 14 countries. Here we report a novel one-step TaqMan quantitative real-time reverse transcription-PCR assay developed to genotype and quantify the viral load for samples containing rotavirus equine-like G3 strains. Using a universal G forward primer and a newly designed reverse primer and TaqMan probe, we developed and validated an assay with a linear dynamic range of 2.3 × 10(9) - 227 copies per reaction and a limit of detection of 227 copies. The percent positive agreement, percent negative agreement, and precision of our assay were 100.00%, 99.63%, and 100.00%, respectively. This assay can simultaneously detect and quantify the viral load for samples containing DS-1-like inter-genogroup reassortant equine-like G3 strains with high sensitivity and specificity, faster turnaround time, and decreased cost and will be valuable for high-throughput screening of stool samples collected to monitor equine-like G3 strain prevalence and circulation among human populations throughout the world. |
Point-of-Care Antigen Test for SARS-CoV-2 in Asymptomatic College Students.
Tinker SC , Szablewski CM , Litvintseva AP , Folster J , Shewmaker PL , Medrzycki M , Bowen MD , Bohannon C , Bagarozzi D Jr , Petway M , Rota PA , Kuhnert-Tallman W , Thornburg N , Prince-Guerra JL , Barrios LC , Tamin A , Harcourt JL , Honein MA . Emerg Infect Dis 2021 27 (10) 2662-2665 We used the BinaxNOW COVID-19 Ag Card to screen 1,540 asymptomatic college students for severe acute respiratory syndrome coronavirus 2 in a low-prevalence setting. Compared with reverse transcription PCR, BinaxNOW showed 20% overall sensitivity; among participants with culturable virus, sensitivity was 60%. BinaxNOW provides point-of-care screening but misses many infections. |
Impact of monovalent rotavirus vaccine on rotavirus hospitalizations among children younger than 5 years of age in the Ouest and Artibonite Departments, Haiti, 2013 to 2019
Desormeaux AM , Burnett E , Joseph G , Lucien MAB , Aliabadi N , Pierre M , Dély P , Pierre K , Fitter D , Leshem E , Tate JE , Bowen MD , Esona M , Gautier J , Siné F , Katz MA , Grant-Greene Y , Parashar UD , Patel R , Boncy J , Juin S . Am J Trop Med Hyg 2021 105 (5) 1309-1316 Rotavirus is responsible for 26% of diarrheal deaths in Latin America and the Caribbean. Haiti introduced the monovalent rotavirus vaccine in April 2014. The objective of this analysis is to describe the impact of the rotavirus vaccine on hospitalizations among Haitian children younger than 5 years old during the first 5 years after introduction. This analysis includes all children with diarrhea who were enrolled as part of a sentinel surveillance system at two hospitals from May 2013 to April 2019. We compare the proportion of rotavirus-positive specimens in each post-vaccine introduction year to the pre-vaccine period. To account for the potential dilution of the proportion of rotavirus-positive specimens from a waning cholera outbreak, we also analyzed annual trends in the absolute number of positive stools, fit a two-component finite-mixture model to the negative specimens, and fit a negative binomial time series model to the pre-vaccine rotavirus-positive specimens to predict the number of rotavirus diarrhea hospital admissions in the absence of rotavirus vaccination. The overall percentage of rotavirus-positive specimens declined by 22% the first year after introduction, increased by 17% the second year, and declined by 33% to 50% the subsequent 3 years. All sensitivity analyses confirmed an overall decline. We observed a clear annual rotavirus seasonality before and after vaccine introduction, with the greatest activity in December through April, and a biennial pattern, with high sharp peaks and flatter longer periods of increased rotavirus activity in alternating years, consistent with suboptimal vaccination coverage. Overall, our study shows evidence that the introduction of the rotavirus vaccine reduced the burden of severe rotavirus diarrhea. |
Use of guanidine thiocyanate-based nucleic acid extraction buffers to inactivate poliovirus in potentially infectious materials
Honeywood MJE , Jeffries-Miles S , Wong K , Harrington C , Burns CC , Oberste MS , Bowen MD , Vega E . J Virol Methods 2021 297 114262 The efforts of the Global Poliovirus Eradication Initiative (GPEI) have brought about the near elimination of poliovirus worldwide. The World Health Organization has issued guidelines for the safe handling and containment of infectious materials (IM) and potentially infectious materials (PIM) following poliovirus eradication. Inactivation of poliovirus in IM and PIM is needed to prevent inadvertent re-introduction of polioviruses post-eradication. In this study, we investigated the use of guanidine thiocyanate-based nucleic acid extraction buffers from commercially available nucleic acid extraction kits to inactivate poliovirus in cell culture isolates and stool suspensions, two common types of poliovirus IM and PIM, respectively. Incubation with selected nucleic acid extraction buffers or extraction buffers supplemented with ethanol reduced the infectivity of high-titer wild poliovirus type 1 (WPV1), wild poliovirus type 3 (WPV3), Sabin 1 (SL1), and Sabin 3 (SL3) cell culture isolates below the limit of detection in CCID(50) assays. Stool suspensions containing WPV1, WPV3, SL1, SL2, or SL3 were also inactivated by the extraction buffers tested. Blind passage of WPV1-spiked stool suspensions confirmed complete inactivation of WPV1 after incubation with extraction buffers. Moreover, treatment with a buffer consisting of 4 M guanidine thiocyanate with 30% ethanol inactivated a high-titer WPV1 culture isolate and a WPV1-spiked stool suspension. Taken together, these results show that guanidine thiocyanate-based nucleic acid extraction buffers are an effective means of inactivating poliovirus IM and PIM, and thus will be instrumental in ensuring containment compliance and preventing potential re-emergence of contained polioviruses. |
Effects of Patient Characteristics on Diagnostic Performance of Self-Collected Samples for SARS-CoV-2 Testing.
Smith-Jeffcoat SE , Koh M , Hoffman A , Rebolledo PA , Schechter MC , Miller HK , Sleweon S , Rossetti R , Kasinathan V , Shragai T , O'Laughlin K , Espinosa CC , Khalil GM , Adeyemo AO , Moorman A , Bauman BL , Joseph K , O'Hegarty M , Kamal N , Atallah H , Moore BL , Bohannon CD , Bankamp B , Hartloge C , Bowen MD , Paulick A , Gargis AS , Elkins C , Stewart RJ , da Silva J , Biedron C , Tate JE , Wang YF , Kirking HL . Emerg Infect Dis 2021 27 (8) 2081-2089 We evaluated the performance of self-collected anterior nasal swab (ANS) and saliva samples compared with healthcare worker-collected nasopharyngeal swab specimens used to test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used the same PCR diagnostic panel to test all self-collected and healthcare worker-collected samples from participants at a public hospital in Atlanta, Georgia, USA. Among 1,076 participants, 51.9% were men, 57.1% were >50 years of age, 81.2% were Black (non-Hispanic), and 74.9% reported >1 chronic medical condition. In total, 8.0% tested positive for SARS-CoV-2. Compared with nasopharyngeal swab samples, ANS samples had a sensitivity of 59% and saliva samples a sensitivity of 68%. Among participants tested 3-7 days after symptom onset, ANS samples had a sensitivity of 80% and saliva samples a sensitivity of 85%. Sensitivity varied by specimen type and patient characteristics. These findings can help physicians interpret PCR results for SARS-CoV-2. |
Cross-sectional study and genotyping of rotavirus-A infections in ruminants in Kuwait.
Abdou NMI , Majeed QAH , Saad AA , Mijatovic-Rustempasic S , Bowen MD , Samy A . BMC Vet Res 2021 17 (1) 245 BACKGROUND: Group A rotaviruses (RVA) are zoonotic pathogens responsible for acute enteritis in human and neonatal ruminants. This research aimed to determine the prevalence of RVA in ruminants (cattle, sheep, and goats) and investigate the circulating RVA genotypes in these animals in Kuwait. We conducted a cross-sectional study to detect RVA in ruminants, using an immunochromatography test (IC), direct sandwich ELISA test, and real-time RT-PCR (RT-qPCR) assay using fecal samples. RESULTS: A total of 400 cattle, 334 sheep, and 222 goats were examined. The prevalence of RVA was 5.3, 1.2, and 2.3%, respectively, using IC. The ELISA test detected RVA from 4.3% of cattle, 0.9% of sheep, and 1.8% of goats. There was a significant association between the occurrence of diarrhea and the presence of RVA in bovine fecal samples (p-value = 0.0022), while no statistical association between diarrhea and the presence of RVA in fecal samples of sheep and goats was observed (p-value = 0.7250; p-value = 0.4499, respectively). Twenty-three of the IC-positive samples (17 from cattle, two from sheep, and four from goats) were tested using a RT-qPCR RVA detection assay targeting the NSP3 gene. The results showed that 21 of 23 IC-positive samples tested positive by RT-qPCR. Detection of RVA genotypes revealed that G10P[11] was the predominant strain in cattle (58.8%), followed by G8P[1] (11.7%). One sheep sample was genotyped as G8P[1]. In addition, G6P[1] and G6P[14] were detected in goat samples. CONCLUSION: The present study revealed that the IC was more sensitive in detecting RVA antigen in fecal samples than the ELISA test. A higher occurrence of RVA infection was observed in cattle than in sheep and goats. This study suggests that RVA might be a risk factor of diarrhea in bovine calves less than 2 weeks old. This research also demonstrates the circulation of RVA in sheep and goat populations in Kuwait. Finally, the G10P[11] RVA genotype was the most prevalent genotype identified from cattle samples. |
Detection of diarrhoea associated rotavirus and co-infection with diarrhoeagenic pathogens in the Littoral region of Cameroon using ELISA, RT-PCR and Luminex xTAG GPP assays
Ghapoutsa RN , Boda M , Gautam R , Ndze VN , Mugyia AE , Etoa FX , Bowen MD , Esona MD . BMC Infect Dis 2021 21 (1) 614 BACKGROUND: Despite the global roll-out of rotavirus vaccines (RotaTeq/Rotarix / ROTAVAC/Rotasiil), mortality and morbidity due to group A rotavirus (RVA) remains high in sub-Saharan Africa, causing 104,000 deaths and 600,000 hospitalizations yearly. In Cameroon, Rotarix™ was introduced in March 2014, but, routine laboratory diagnosis of rotavirus infection is not yet a common practice, and vaccine effectiveness studies to determine the impact of vaccine introduction have not been done. Thus, studies examining RVA prevalence post vaccine introduction are needed. The study aim was to determine RVA prevalence in severe diarrhoea cases in Littoral region, Cameroon and investigate the role of other diarrheagenic pathogens in RVA-positive cases. METHODS: We carried out a study among hospitalized children < 5 years of age, presenting with acute gastroenteritis in selected hospitals of the Littoral region of Cameroon, from May 2015 to April 2016. Diarrheic stool samples and socio-demographic data including immunization and breastfeeding status were collected from these participating children. Samples were screened by ELISA (ProSpecT™ Rotavirus) for detection of RVA antigen and by gel-based RT-PCR for detection of the VP6 gene. Co-infection was assessed by multiplexed molecular detection of diarrheal pathogens using the Luminex xTAG GPP assay. RESULTS: The ELISA assay detected RVA antigen in 54.6% (71/130) of specimens, with 45, positive by VP6 RT-PCR and 54, positive using Luminex xTAG GPP. Luminex GPP was able to detect all 45 VP6 RT-PCR positive samples. Co-infections were found in 63.0% (34/54) of Luminex positive RVA infections, with Shigella (35.3%; 12/34) and ETEC (29.4%; 10/34) detected frequently. Of the 71 ELISA positive RVA cases, 57.8% (41/71) were fully vaccinated, receiving two doses of Rotarix. CONCLUSION: This study provides insight on RVA prevalence in Cameroon, which could be useful for post-vaccine epidemiological studies, highlights higher than expected RVA prevalence in vaccinated children hospitalized for diarrhoea and provides the trend of RVA co-infection with other enteric pathogens. RVA genotyping is needed to determine circulating rotavirus genotypes in Cameroon, including those causing disease in vaccinated children. |
Effectiveness of monovalent rotavirus vaccine against hospitalizations due to all rotavirus and equine-like G3P[8] genotypes in Haiti 2014-2019.
Burnett E , Juin S , Esona MD , Desormeaux AM , Aliabadi N , Pierre M , Andre-Alboth J , Leshem E , Etheart MD , Patel R , Dely P , Fitter D , Jean-Denis G , Kalou M , Katz MA , Bowen MD , Grant-Greene Y , Boncy J , Parashar UD , Joseph GA , Tate JE . Vaccine 2021 39 (32) 4458-4462 BACKGROUND: Rotavirus vaccines are effective in preventing severe rotavirus. Haiti introduced 2-dose monovalent (G1P[8]) rotavirus vaccine recommended for infants at 6 and 10 weeks of age in 2014. We calculated the effectiveness of rotavirus vaccine against hospitalization for acute gastroenteritis in Haiti. METHODS: We enrolled children 6-59 months old admitted May 2014-September 2019 for acute watery diarrhea at any sentinel surveillance hospital. Stool was tested for rotavirus using enzyme immunoassay (EIA) and genotyped with multiplex one-step RT-PCR assay and Sanger sequencing for stratification by genotype. We used a case-negative design where cases were children positive for rotavirus and controls were negative for rotavirus. Only children eligible for vaccination were included and a child was considered vaccinated if vaccine was given ≥ 14 days before enrollment. We used unconditional logistic regression to calculate odds ratios and calculated 2-dose and 1-dose vaccine effectiveness (VE) as (1 - odds ratio) * 100. RESULTS: We included 129 (19%) positive cases and 543 (81%) negative controls. Among cases, 77 (60%) were positive for equine-like G3P[8]. Two doses of rotavirus vaccine were 66% (95% CI: 44, 80) effective against hospitalizations due to any strain of rotavirus and 64% (95% CI: 33, 81) effective against hospitalizations due to the equine-like G3P[8] genotype. CONCLUSIONS: These findings are comparable to other countries in the Americas region. To the best of our knowledge, this is the first VE estimate both against the equine-like G3P[8] genotype and from a Caribbean country. Overall, these results support rotavirus vaccine use and demonstrate the importance of complete vaccination. |
Whole gene analysis of a genotype G29P[6] human rotavirus strain identified in Central African Republic.
Banga-Mingo V , Esona MD , Betrapally NS , Gautam R , Jaimes J , Katz E , Waku-Kouomou D , Bowen MD , Gouandjika-Vasilache I . BMC Res Notes 2021 14 (1) 218 OBJECTIVE: Rotavirus A (RVA) remains the main causative agent of gastroenteritis in young children and the young of many mammalian and avian species. In this study we describe a RVA strain detected from a 6-month-old child from Central African Republic (CAR). RESULTS: We report the 11 open reading frame sequences of a G29-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2 rotavirus strain, RVA/Human-wt/CAR/CAR91/2014/G29P[6]. Nine genes (VP1-VP3, VP6, NSP1-NSP5) shared 90-100% sequence similarities with genogroup 2 rotaviruses. Phylogenetically, backbone genes, except for VP3 and NSP4 genes, were linked with cognate gene sequences of human DS-1-like genogroup 2, hence their genetic origin. The VP3 and NSP4 genes, clustered genetically with both human and animal strains, an indication genetic reassortment human and animal RVA strains has taken place. The VP7 gene shared nucleotide (93-94%) and amino acid (95.5-96.7%) identities with Kenyan and Belgian human G29 strains, as well as to buffalo G29 strain from South Africa, while the VP4 gene most closely resembled P[6]-lineage I strains from Africa and Bangladesh (97%). |
Performance Evaluation of Serial SARS-CoV-2 Rapid Antigen Testing During a Nursing Home Outbreak.
McKay SL , Tobolowsky FA , Moritz ED , Hatfield KM , Bhatnagar A , LaVoie SP , Jackson DA , Lecy KD , Bryant-Genevier J , Campbell D , Freeman B , Gilbert SE , Folster JM , Medrzycki M , Shewmaker PL , Bankamp B , Radford KW , Anderson R , Bowen MD , Negley J , Reddy SC , Jernigan JA , Brown AC , McDonald LC , Kutty PK . Ann Intern Med 2021 174 (7) 945-951 BACKGROUND: To address high COVID-19 burden in U.S. nursing homes, rapid SARS-CoV-2 antigen tests have been widely distributed in those facilities. However, performance data are lacking, especially in asymptomatic people. OBJECTIVE: To evaluate the performance of SARS-CoV-2 antigen testing when used for facility-wide testing during a nursing home outbreak. DESIGN: A prospective evaluation involving 3 facility-wide rounds of testing where paired respiratory specimens were collected to evaluate the performance of the BinaxNOW antigen test compared with virus culture and real-time reverse transcription polymerase chain reaction (RT-PCR). Early and late infection were defined using changes in RT-PCR cycle threshold values and prior test results. SETTING: A nursing home with an ongoing SARS-CoV-2 outbreak. PARTICIPANTS: 532 paired specimens collected from 234 available residents and staff. MEASUREMENTS: Percentage of positive agreement (PPA) and percentage of negative agreement (PNA) for BinaxNOW compared with RT-PCR and virus culture. RESULTS: BinaxNOW PPA with virus culture, used for detection of replication-competent virus, was 95%. However, the overall PPA of antigen testing with RT-PCR was 69%, and PNA was 98%. When only the first positive test result was analyzed for each participant, PPA of antigen testing with RT-PCR was 82% among 45 symptomatic people and 52% among 343 asymptomatic people. Compared with RT-PCR and virus culture, the BinaxNOW test performed well in early infection (86% and 95%, respectively) and poorly in late infection (51% and no recovered virus, respectively). LIMITATION: Accurate symptom ascertainment was challenging in nursing home residents; test performance may not be representative of testing done by nonlaboratory staff. CONCLUSION: Despite lower positive agreement compared with RT-PCR, antigen test positivity had higher agreement with shedding of replication-competent virus. These results suggest that antigen testing could be a useful tool to rapidly identify contagious people at risk for transmitting SARS-CoV-2 during nascent outbreaks and help reduce COVID-19 burden in nursing homes. PRIMARY FUNDING SOURCE: None. |
Epidemiologic characteristics associated with SARS-CoV-2 antigen-based test results, rRT-PCR cycle threshold values, subgenomic RNA, and viral culture results from university testing.
Ford L , Lee C , Pray IW , Cole D , Bigouette JP , Abedi GR , Bushman D , Delahoy MJ , Currie DW , Cherney B , Kirby M , Fajardo G , Caudill M , Langolf K , Kahrs J , Zochert T , Kelly P , Pitts C , Lim A , Aulik N , Tamin A , Harcourt JL , Queen K , Zhang J , Whitaker B , Browne H , Medrzycki M , Shewmaker P , Bonenfant G , Zhou B , Folster J , Bankamp B , Bowen MD , Thornburg NJ , Goffard K , Limbago B , Bateman A , Tate JE , Gieryn D , Kirking HL , Westergaard R , Killerby M . Clin Infect Dis 2021 73 (6) e1348-e1355 BACKGROUND: Real-time reverse transcription polymerase chain reaction (rRT-PCR) and antigen tests are important diagnostics for SARS-CoV-2. Sensitivity of antigen tests has been shown to be lower than that of rRT-PCR; however, data to evaluate epidemiologic characteristics that affect test performance are limited. METHODS: Paired mid-turbinate nasal swabs were collected from university students and staff and tested for SARS-CoV-2 using both Quidel Sofia SARS Antigen Fluorescent Immunoassay (FIA) and rRT-PCR assay. Specimens positive by either rRT-PCR or antigen FIA were placed in viral culture and tested for subgenomic RNA (sgRNA). Logistic regression models were used to evaluate characteristics associated with antigen results, rRT-PCR cycle threshold (Ct) values, sgRNA, and viral culture. RESULTS: Antigen FIA sensitivity was 78.9% and 43.8% among symptomatic and asymptomatic participants respectively. Among rRT-PCR positive participants, negative antigen results were more likely among asymptomatic participants (OR 4.6, CI:1.3-15.4) and less likely among participants reporting nasal congestion (OR 0.1, CI:0.03-0.8). rRT-PCR-positive specimens with higher Ct values (OR 0.5, CI:0.4-0.8) were less likely, and specimens positive for sgRNA (OR 10.2, CI:1.6-65.0) more likely, to yield positive virus isolation. Antigen testing was >90% positive in specimens with Ct values <29. Positive predictive value of antigen test for positive viral culture (57.7%) was similar to that of rRT-PCR (59.3%). CONCLUSIONS: SARS-CoV-2 antigen test advantages include low cost, wide availability and rapid turnaround time, making them important screening tests. The performance of antigen tests may vary with patient characteristics, so performance characteristics should be accounted for when designing testing strategies and interpreting results. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure