Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Blanchfield K[original query] |
---|
Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies
Kamal RP , Blanchfield K , Belser JA , Music N , Tzeng WP , Holiday C , Burroughs A , Sun X , Maines TR , Levine MZ , York IA . J Virol 2017 91 (20) Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutinin inhibition (HI) and micro-neutralization (MN) assays, H7 viruses and vaccines induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate pre-pandemic vaccines. We have previously shown that purified recombinant H7 hemagglutinin (HA) appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. Here, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and NA from 3 different H7 viruses [A/Shanghai/2/2013 (H7N9), A/Netherlands/219/2003 (H7N7) and A/New York/107/2003 (H7N2)], or with human A(H1N1)pdm09 [A/California/07/2009-like] or A(H3N2) [A/Perth16/2009] viruses. Mice produced equivalent titers of antibodies to all viruses as measured by ELISA. However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for pre-pandemic vaccines.IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of pre-pandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody titers measured by hemagglutination inhibition (HI) and virus microneutralization (MN) assays. Since H7 vaccines typically induce low HI and MN titers, they have been considered to be poorly immunogenic. We show that in mice H7 whole inactivated virus (WIV) vaccines were as immunogenic as seasonal WIVs, as they induced similar levels of overall serum antibodies. However, a larger fraction of the antibodies induced by H7 WIV was non-neutralizing in vitro. Nevertheless, the H7 WIV completely protected mice against homologous viral challenge, and antibodies directed against the HA-head were the major contributor toward immune protection. Vaccines against H7 avian influenza viruses may be more effective than HI and virus neutralization assays suggest, and such vaccines may need other methods for evaluation. |
Diverse antigenic site targeting of influenza hemagglutinin in the murine antibody recall response to A(H1N1)pdm09 virus.
Wilson JR , Guo Z , Tzeng WP , Garten RJ , Xiyan X , Blanchard EG , Blanchfield K , Stevens J , Katz JM , York IA . Virology 2015 485 252-262 Here we define the epitopes on HA that are targeted by a group of 9 recombinant monoclonal antibodies (rmAbs) isolated from memory B cells of mice, immunized by infection with A(H1N1)pdm09 virus followed by a seasonal TIV boost. These rmAbs were all reactive against the HA1 region of HA, but display 7 distinct binding footprints, targeting each of the 4 known antigenic sites. Although the rmAbs were not broadly cross-reactive, a group showed subtype-specific cross-reactivity with the HA of A/South Carolina/1/18. Screening these rmAbs with a panel of human A(H1N1)pdm09 virus isolates indicated that naturally-occurring changes in HA could reduce rmAb binding, HI activity, and/or virus neutralization activity by rmAb, without showing changes in recognition by polyclonal antiserum. In some instances, virus neutralization was lost while both ELISA binding and HI activity were retained, demonstrating a discordance between the two serological assays traditionally used to detect antigenic drift. |
Recombinant influenza H7 hemagglutinins induce lower neutralizing antibody titers in mice than do seasonal hemagglutinins
Blanchfield K , Kamal RP , Tzeng WP , Music N , Wilson JR , Stevens J , Lipatov AS , Katz JM , York IA . Influenza Other Respir Viruses 2014 8 (6) 628-35 BACKGROUND: Vaccines against avian influenza viruses often require high hemagglutinin (HA) doses or adjuvants to achieve serological titers associated with protection against disease. In particular, viruses of the H7 subtype frequently do not induce strong antibody responses following immunization. OBJECTIVES: To evaluate whether poor immunogenicity of H7 viruses is an intrinsic property of the H7 hemagglutinin. METHODS: We compared the immunogenicity, in naive mice, of purified recombinant HA from two H7 viruses [A/Netherlands/219/2003(H7N7) and A/New York/107/2003(H7N2)] to that of HA from human pandemic [A/California/07/2009(H1N1pdm09)] and seasonal [A/Perth16/2009(H3N2)] viruses. RESULTS: After two intramuscular injections with purified hemagglutinin, mice produced antibodies to all HAs, but the response to the human virus HAs was greater than to H7 HAs. The difference was relatively minor when measured by ELISA, greater when measured by hemagglutination inhibition assays, and more marked still by microneutralization assays. H7 HAs induced little or no neutralizing antibody response in mice at either dose tested. Antibodies induced by H7 were of significantly lower avidity than for H3 or H1N1pdm09. CONCLUSIONS: We conclude that H7 HAs may be intrinsically less immunogenic than HA from seasonal human influenza viruses. |
Influenza vaccination accelerates recovery of ferrets from lymphopenia
Music N , Reber AJ , Lipatov AS , Kamal RP , Blanchfield K , Wilson JR , Donis RO , Katz JM , York IA . PLoS One 2014 9 (6) e100926 Ferrets are a useful animal model for human influenza virus infections, since they closely mimic the pathogenesis of influenza viruses observed in humans. However, a lack of reagents, especially for flow cytometry of immune cell subsets, has limited research in this model. Here we use a panel of primarily species cross-reactive antibodies to identify ferret T cells, cytotoxic T lymphocytes (CTL), B cells, and granulocytes in peripheral blood. Following infection with seasonal H3N2 or H1N1pdm09 influenza viruses, these cell types showed rapid and dramatic changes in frequency, even though clinically the infections were mild. The loss of B cells and CD4 and CD8 T cells, and the increase in neutrophils, were especially marked 1-2 days after infection, when about 90% of CD8+ T cells disappeared from the peripheral blood. The different virus strains led to different kinetics of leukocyte subset alterations. Vaccination with homologous vaccine reduced clinical symptoms slightly, but led to a much more rapid return to normal leukocyte parameters. Assessment of clinical symptoms may underestimate the effectiveness of influenza vaccine in restoring homeostasis. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure