Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-30 (of 36 Records) |
Query Trace: Bird BH[original query] |
---|
Immunobiology of Crimean-Congo hemorrhagic fever
Rodriguez SE , Hawman DW , Sorvillo TE , O'Neal TJ , Bird BH , Rodriguez LL , Bergeron É , Nichol ST , Montgomery JM , Spiropoulou CF , Spengler JR . Antiviral Res 2022 199 105244 Human infection with Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne pathogen in the family Nairoviridae, can result in a spectrum of outcomes, ranging from asymptomatic infection through mild clinical signs to severe or fatal disease. Studies of CCHFV immunobiology have investigated the relationship between innate and adaptive immune responses with disease severity, attempting to elucidate factors associated with differential outcomes. In this article, we begin by highlighting unanswered questions, then review current efforts to answer them. We discuss in detail current clinical studies and research in laboratory animals on CCHF, including immune targets of infection and adaptive and innate immune responses. We summarize data about the role of the immune response in natural infections of animals and humans and experimental studies in vitro and in vivo and from evaluating immune-based therapies and vaccines, and present recommendations for future research. |
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Kuhn JH , Adkins S , Agwanda BR , Al Kubrusli R , Alkhovsky Aльxoвcкий Cepгeй Bлaдимиpoвич SV , Amarasinghe GK , Avšič-Županc T , Ayllón MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Basler CF , Bavari S , Beer M , Bejerman N , Bennett AJ , Bente DA , Bergeron É , Bird BH , Blair CD , Blasdell KR , Blystad DR , Bojko J , Borth WB , Bradfute S , Breyta R , Briese T , Brown PA , Brown JK , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Büttner C , Calisher CH , Cao 曹孟籍 M , Casas I , Chandran K , Charrel RN , Cheng Q , Chiaki 千秋祐也 Y , Chiapello M , Choi IR , Ciuffo M , Clegg JCS , Crozier I , Dal Bó E , de la Torre JC , de Lamballerie X , de Swart RL , Debat H , Dheilly NM , Di Cicco E , Di Paola N , Di Serio F , Dietzgen RG , Digiaro M , Dolnik O , Drebot MA , Drexler JF , Dundon WG , Duprex WP , Dürrwald R , Dye JM , Easton AJ , Ebihara 海老原秀喜 H , Elbeaino T , Ergünay K , Ferguson HW , Fooks AR , Forgia M , Formenty PBH , Fránová J , Freitas-Astúa J , Fu 付晶晶 J , Fürl S , Gago-Zachert S , Gāo 高福 GF , García ML , García-Sastre A , Garrison AR , Gaskin T , Gonzalez JJ , Griffiths A , Goldberg TL , Groschup MH , Günther S , Hall RA , Hammond J , Han 韩彤 T , Hepojoki J , Hewson R , Hong 洪健 J , Hong 洪霓 N , Hongo 本郷誠治 S , Horie 堀江真行 M , Hu JS , Hu T , Hughes HR , Hüttner F , Hyndman TH , Ilyas M , Jalkanen R , Jiāng 姜道宏 D , Jonson GB , Junglen S , Kadono 上遠野冨士夫 F , Kaukinen KH , Kawate M , Klempa B , Klingström J , Kobinger G , Koloniuk I , Kondō 近藤秀樹 H , Koonin EV , Krupovic M , Kubota 久保田健嗣 K , Kurath G , Laenen L , Lambert AJ , Langevin SL , Lee B , Lefkowitz EJ , Leroy EM , Li 李邵蓉 S , Li 李龙辉 L , Lǐ 李建荣 J , Liu 刘华珍 H , Lukashevich IS , Maes P , de Souza WM , Marklewitz M , Marshall SH , Marzano SL , Massart S , McCauley JW , Melzer M , Mielke-Ehret N , Miller KM , Ming TJ , Mirazimi A , Mordecai GJ , Mühlbach HP , Mühlberger E , Naidu R , Natsuaki 夏秋知英 T , Navarro JA , Netesov Heтёcoв Cepгeй Bиктopoвич SV , Neumann G , Nowotny N , Nunes MRT , Olmedo-Velarde A , Palacios G , Pallás V , Pályi B , Papa Άννα Παπά A , Paraskevopoulou Σοφία Παρασκευοπούλου S , Park AC , Parrish CR , Patterson DA , Pauvolid-Corrêa A , Pawęska JT , Payne S , Peracchio C , Pérez DR , Postler TS , Qi 亓立莹 L , Radoshitzky SR , Resende RO , Reyes CA , Rima BK , Luna GR , Romanowski V , Rota P , Rubbenstroth D , Rubino L , Runstadler JA , Sabanadzovic S , Sall AA , Salvato MS , Sang R , Sasaya 笹谷孝英 T , Schulze AD , Schwemmle M , Shi 施莽 M , Shí 石晓宏 X , Shí 石正丽 Z , Shimomoto 下元祥史 Y , Shirako Y , Siddell SG , Simmonds P , Sironi M , Smagghe G , Smither S , Song 송진원 JW , Spann K , Spengler JR , Stenglein MD , Stone DM , Sugano J , Suttle CA , Tabata A , Takada 高田礼人 A , Takeuchi 竹内繁治 S , Tchouassi DP , Teffer A , Tesh RB , Thornburg NJ , Tomitaka 冨高保弘 Y , Tomonaga 朝長啓造 K , Tordo N , Torto B , Towner JS , Tsuda 津田新哉 S , Tu 涂长春 C , Turina M , Tzanetakis IE , Uchida J , Usugi 宇杉富雄 T , Vaira AM , Vallino M , van den Hoogen B , Varsani A , Vasilakis Νίκος Βασιλάκης N , Verbeek M , von Bargen S , Wada 和田治郎 J , Wahl V , Walker PJ , Wang 王林发 LF , Wang 王国平 G , Wang 王雁翔 Y , Wang 王亚琴 Y , Waqas M , Wèi 魏太云 T , Wen 温少华 S , Whitfield AE , Williams JV , Wolf YI , Wu 吴建祥 J , Xu 徐雷 L , Yanagisawa 栁澤広宣 H , Yang 杨彩霞 C , Yang 杨作坤 Z , Zerbini FM , Zhai 翟立峰 L , Zhang 张永振 YZ , Zhang 张松 S , Zhang 张靖国 J , Zhang 张哲 Z , Zhou 周雪平 X . Arch Virol 2021 166 (12) 3513-3566 ![]() In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Kuhn JH , Adkins S , Alioto D , Alkhovsky SV , Amarasinghe GK , Anthony SJ , Avšič-Županc T , Ayllón MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Bartonička T , Basler C , Bavari S , Beer M , Bente DA , Bergeron É , Bird BH , Blair C , Blasdell KR , Bradfute SB , Breyta R , Briese T , Brown PA , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Buzkan N , Calisher CH , Cao M , Casas I , Chamberlain J , Chandran K , Charrel RN , Chen B , Chiumenti M , Choi IR , Clegg JCS , Crozier I , da Graça JV , Dal Bó E , Dávila AMR , de la Torre JC , de Lamballerie X , de Swart RL , Di Bello PL , Di Paola N , Di Serio F , Dietzgen RG , Digiaro M , Dolja VV , Dolnik O , Drebot MA , Drexler JF , Dürrwald R , Dufkova L , Dundon WG , Duprex WP , Dye JM , Easton AJ , Ebihara H , Elbeaino T , Ergünay K , Fernandes J , Fooks AR , Formenty PBH , Forth LF , Fouchier RAM , Freitas-Astúa J , Gago-Zachert S , Gāo GF , García ML , García-Sastre A , Garrison AR , Gbakima A , Goldstein T , Gonzalez JJ , Griffiths A , Groschup MH , Günther S , Guterres A , Hall RA , Hammond J , Hassan M , Hepojoki J , Hepojoki S , Hetzel U , Hewson R , Hoffmann B , Hongo S , Höper D , Horie M , Hughes HR , Hyndman TH , Jambai A , Jardim R , Jiāng D , Jin Q , Jonson GB , Junglen S , Karadağ S , Keller KE , Klempa B , Klingström J , Kobinger G , Kondō H , Koonin EV , Krupovic M , Kurath G , Kuzmin IV , Laenen L , Lamb RA , Lambert AJ , Langevin SL , Lee B , Lemos ERS , Leroy EM , Li D , Lǐ J , Liang M , Liú W , Liú Y , Lukashevich IS , Maes P , Marciel de Souza W , Marklewitz M , Marshall SH , Martelli GP , Martin RR , Marzano SL , Massart S , McCauley JW , Mielke-Ehret N , Minafra A , Minutolo M , Mirazimi A , Mühlbach HP , Mühlberger E , Naidu R , Natsuaki T , Navarro B , Navarro JA , Netesov SV , Neumann G , Nowotny N , Nunes MRT , Nylund A , Økland AL , Oliveira RC , Palacios G , Pallas V , Pályi B , Papa A , Parrish CR , Pauvolid-Corrêa A , Pawęska JT , Payne S , Pérez DR , Pfaff F , Radoshitzky SR , Rahman AU , Ramos-González PL , Resende RO , Reyes CA , Rima BK , Romanowski V , Robles Luna G , Rota P , Rubbenstroth D , Runstadler JA , Ruzek D , Sabanadzovic S , Salát J , Sall AA , Salvato MS , Sarpkaya K , Sasaya T , Schwemmle M , Shabbir MZ , Shí X , Shí Z , Shirako Y , Simmonds P , Širmarová J , Sironi M , Smither S , Smura T , Song JW , Spann KM , Spengler JR , Stenglein MD , Stone DM , Straková P , Takada A , Tesh RB , Thornburg NJ , Tomonaga K , Tordo N , Towner JS , Turina M , Tzanetakis I , Ulrich RG , Vaira AM , van den Hoogen B , Varsani A , Vasilakis N , Verbeek M , Wahl V , Walker PJ , Wang H , Wang J , Wang X , Wang LF , Wèi T , Wells H , Whitfield AE , Williams JV , Wolf YI , Wú Z , Yang X , Yáng X , Yu X , Yutin N , Zerbini FM , Zhang T , Zhang YZ , Zhou G , Zhou X . Arch Virol 2020 165 (12) 3023-3072 ![]() In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
Towards a Sustainable One Health Approach to Crimean-Congo Hemorrhagic Fever Prevention: Focus Areas and Gaps in Knowledge.
Sorvillo TE , Rodriguez SE , Hudson P , Carey M , Rodriguez LL , Spiropoulou CF , Bird BH , Spengler JR , Bente DA . Trop Med Infect Dis 2020 5 (3) ![]() ![]() Crimean-Congo hemorrhagic fever virus (CCHFV) infection is identified in the 2018 World Health Organization Research and Development Blueprint and the National Institute of Allergy and Infectious Diseases (NIH/NIAID) priority A list due to its high risk to public health and national security. Tick-borne CCHFV is widespread, found in Europe, Asia, Africa, the Middle East, and the Indian subcontinent. It circulates between ticks and several vertebrate hosts without causing overt disease, and thus can be present in areas without being noticed by the public. As a result, the potential for zoonotic spillover from ticks and animals to humans is high. In contrast to other emerging viruses, human-to-human transmission of CCHFV is typically limited; therefore, prevention of spillover events should be prioritized when considering countermeasures. Several factors in the transmission dynamics of CCHFV, including a complex transmission cycle that involves both ticks and vertebrate hosts, lend themselves to a One Health approach for the prevention and control of the disease that are often overlooked by current strategies. Here, we examine critical focus areas to help mitigate CCHFV spillover, including surveillance, risk assessment, and risk reduction strategies concentrated on humans, animals, and ticks; highlight gaps in knowledge; and discuss considerations for a more sustainable One Health approach to disease control. |
Theoretical risk of genetic reassortment should not impede development of live, attenuated Rift Valley fever (RVF) vaccines commentary on the draft WHO RVF Target Product Profile.
Monath TP , Kortekaas J , Watts DM , Christofferson RC , Desiree LaBeaud A , Gowen B , Peters CJ , Smith DR , Swanepoel R , Morrill JC , Ksiazek TG , Pittman PR , Bird BH , Bettinger G . Vaccine X 2020 5 100060 ![]() ![]() In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment. |
Isolation of Angola-like Marburg virus from Egyptian rousette bats from West Africa
Amman BR , Bird BH , Bakarr IA , Bangura J , Schuh AJ , Johnny J , Sealy TK , Conteh I , Koroma AH , Foday I , Amara E , Bangura AA , Gbakima AA , Tremeau-Bravard A , Belaganahalli M , Dhanota J , Chow A , Ontiveros V , Gibson A , Turay J , Patel K , Graziano J , Bangura C , Kamanda ES , Osborne A , Saidu E , Musa J , Bangura D , Williams SMT , Wadsworth R , Turay M , Edwin L , Mereweather-Thompson V , Kargbo D , Bairoh FV , Kanu M , Robert W , Lungai V , Guetiya Wadoum RE , Coomber M , Kanu O , Jambai A , Kamara SM , Taboy CH , Singh T , Mazet JAK , Nichol ST , Goldstein T , Towner JS , Lebbie A . Nat Commun 2020 11 (1) 510 Marburg virus (MARV) causes sporadic outbreaks of severe Marburg virus disease (MVD). Most MVD outbreaks originated in East Africa and field studies in East Africa, South Africa, Zambia, and Gabon identified the Egyptian rousette bat (ERB; Rousettus aegyptiacus) as a natural reservoir. However, the largest recorded MVD outbreak with the highest case-fatality ratio happened in 2005 in Angola, where direct spillover from bats was not shown. Here, collaborative studies by the Centers for Disease Control and Prevention, Njala University, University of California, Davis USAID-PREDICT, and the University of Makeni identify MARV circulating in ERBs in Sierra Leone. PCR, antibody and virus isolation data from 1755 bats of 42 species shows active MARV infection in approximately 2.5% of ERBs. Phylogenetic analysis identifies MARVs that are similar to the Angola strain. These results provide evidence of MARV circulation in West Africa and demonstrate the value of pathogen surveillance to identify previously undetected threats. |
Clinical, histopathologic, and immunohistochemical characterization of experimental Marburg virus infection in a natural reservoir host, the Egyptian rousette bat (Rousettus aegyptiacus)
Jones MEB , Amman BR , Sealy TK , Uebelhoer LS , Schuh AJ , Flietstra T , Bird BH , Coleman-McCray JD , Zaki SR , Nichol ST , Towner JS . Viruses 2019 11 (3) Egyptian rousette bats (Rousettus aegyptiacus) are natural reservoir hosts of Marburg virus (MARV), and Ravn virus (RAVV; collectively called marburgviruses) and have been linked to human cases of Marburg virus disease (MVD). We investigated the clinical and pathologic effects of experimental MARV infection in Egyptian rousettes through a serial euthanasia study and found clear evidence of mild but transient disease. Three groups of nine, captive-born, juvenile male bats were inoculated subcutaneously with 10,000 TCID50 of Marburg virus strain Uganda 371Bat2007, a minimally passaged virus originally isolated from a wild Egyptian rousette. Control bats (n = 3) were mock-inoculated. Three animals per day were euthanized at 3, 5(-)10, 12 and 28 days post-inoculation (DPI); controls were euthanized at 28 DPI. Blood chemistry analyses showed a mild, statistically significant elevation in alanine aminotransferase (ALT) at 3, 6 and 7 DPI. Lymphocyte and monocyte counts were mildly elevated in inoculated bats after 9 DPI. Liver histology revealed small foci of inflammatory infiltrate in infected bats, similar to lesions previously described in wild, naturally-infected bats. Liver lesion severity scores peaked at 7 DPI, and were correlated with both ALT and hepatic viral RNA levels. Immunohistochemical staining detected infrequent viral antigen in liver (3(-)8 DPI, n = 8), spleen (3(-)7 DPI, n = 8), skin (inoculation site; 3(-)12 DPI, n = 20), lymph nodes (3(-)10 DPI, n = 6), and oral submucosa (8(-)9 DPI, n = 2). Viral antigen was present in histiocytes, hepatocytes and mesenchymal cells, and in the liver, antigen staining co-localized with inflammatory foci. These results show the first clear evidence of very mild disease caused by a filovirus in a reservoir bat host and provide support for our experimental model of this virus-reservoir host system. |
Attenuation and efficacy of live-attenuated Rift Valley fever virus vaccine candidates in non-human primates
Smith DR , Johnston SC , Piper A , Botto M , Donnelly G , Shamblin J , Albarino CG , Hensley LE , Schmaljohn C , Nichol ST , Bird BH . PLoS Negl Trop Dis 2018 12 (5) e0006474 Rift Valley fever virus (RVFV) is an important mosquito-borne veterinary and human pathogen that has caused large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Currently, no licensed vaccine or therapeutics exists to treat this potentially deadly disease. The explosive nature of RVFV outbreaks and the severe consequences of its accidental or intentional introduction into RVFV-free areas provide the impetus for the development of novel vaccine candidates for use in both livestock and humans. Rationally designed vaccine candidates using reverse genetics have been used to develop deletion mutants of two known RVFV virulence factors, the NSs and NSm genes. These recombinant viruses were demonstrated to be protective and immunogenic in rats, mice, and sheep, without producing clinical illness in these animals. Here, we expand upon those findings and evaluate the single deletion mutant (DeltaNSs rRVFV) and double deletion mutant (DeltaNSs-DeltaNSm rRVFV) vaccine candidates in the common marmoset (Callithrix jacchus), a non-human primate (NHP) model resembling severe human RVF disease. We demonstrate that both the DeltaNSs and DeltaNSs-DeltaNSm rRVFV vaccine candidates were found to be safe and immunogenic in the current study. The vaccinated animals received a single dose of vaccine that led to the development of a robust antibody response. No vaccine-induced adverse reactions, signs of clinical illness or infectious virus were detected in the vaccinated marmosets. All vaccinated animals that were subsequently challenged with RVFV were protected against viremia and liver disease. In summary, our results provide the basis for further development of the DeltaNSs and DeltaNSs-DeltaNSm rRVFV as safe and effective human RVFV vaccines for this significant public health threat. |
Vertebrate host susceptibility to Heartland virus
Bosco-Lauth AM , Calvert AE , Root JJ , Gidlewski T , Bird BH , Bowen RA , Muehlenbachs A , Zaki SR , Brault AC . Emerg Infect Dis 2016 22 (12) 2070-2077 Heartland virus (HRTV) is a recently described phlebovirus initially isolated in 2009 from 2 humans who had leukopenia and thrombocytopenia. Serologic assessment of domestic and wild animal populations near the residence of 1 of these persons showed high exposure rates to raccoons, white-tailed deer, and horses. To our knowledge, no laboratory-based assessments of viremic potential of animals infected with HRTV have been performed. We experimentally inoculated several vertebrates (raccoons, goats, chickens, rabbits, hamsters, C57BL/6 mice, and interferon-alpha/beta/gamma receptor-deficient [Ag129]) mice with this virus. All animals showed immune responses against HRTV after primary or secondary exposure. However, neutralizing antibody responses were limited. Only Ag129 mice showed detectable viremia and associated illness and death, which were dose dependent. Ag129 mice also showed development of mean peak viral antibody titers >8 log10 PFU/mL, hemorrhagic hepatic lesions, splenomegaly, and large amounts of HRTV antigen in mononuclear cells and hematopoietic cells in the spleen. |
Ebola Virus Disease Diagnostics, Sierra Leone: Analysis of Real-time Reverse Transcription-Polymerase Chain Reaction Values for Clinical Blood and Oral Swab Specimens.
Erickson BR , Sealy TK , Flietstra T , Morgan L , Kargbo B , Matt-Lebby VE , Gibbons A , Chakrabarti AK , Graziano J , Presser L , Flint M , Bird BH , Brown S , Klena JD , Blau DM , Brault AC , Belser JA , Salzer JS , Schuh AJ , Lo M , Zivcec M , Priestley RA , Pyle M , Goodman C , Bearden S , Amman BR , Basile A , Bergeron E , Bowen MD , Dodd KA , Freeman MM , McMullan LK , Paddock CD , Russell BJ , Sanchez AJ , Towner JS , Wang D , Zemtsova GE , Stoddard RA , Turnsek M , Guerrero LW , Emery SL , Stovall J , Kainulainen MH , Perniciaro JL , Mijatovic-Rustempasic S , Shakirova G , Winter J , Sexton C , Liu F , Slater K , Anderson R , Andersen L , Chiang CF , Tzeng WP , Crowe SJ , Maenner MJ , Spiropoulou CF , Nichol ST , Stroher U . J Infect Dis 2016 214 S258-S262 ![]() During the Ebola virus outbreak of 2013-2016, the Viral Special Pathogens Branch field laboratory in Sierra Leone tested approximately 26 000 specimens between August 2014 and October 2015. Analysis of the B2M endogenous control Ct values showed its utility in monitoring specimen quality, comparing results with different specimen types, and interpretation of results. For live patients, blood is the most sensitive specimen type and oral swabs have little diagnostic utility. However, swabs are highly sensitive for diagnostic testing of corpses. |
Laboratory response to Ebola - West Africa and United States
Sealy TK , Erickson BR , Taboy CH , Stroher U , Towner JS , Andrews SE , Rose LE , Weirich E , Lowe L , Klena JD , Spiropoulou CF , Rayfield MA , Bird BH . MMWR Suppl 2016 65 (3) 44-9 The 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa highlighted the need to maintain organized laboratory systems or networks that can be effectively reorganized to implement new diagnostic strategies and laboratory services in response to large-scale events. Although previous Ebola outbreaks enabled establishment of critical laboratory practice safeguards and diagnostic procedures, this Ebola outbreak in West Africa highlighted the need for planning and preparedness activities that are better adapted to emerging pathogens or to pathogens that have attracted little commercial interest. The crisis underscored the need for better mechanisms to streamline development and evaluation of new diagnostic assays, transfer of material and specimens between countries and organizations, and improved processes for rapidly deploying health workers with specific laboratory expertise. The challenges and events of the outbreak forced laboratorians to examine not only the comprehensive capacities of existing national laboratory systems to recognize and respond to events, but also their sustainability over time and the mechanisms that need to be pre-established to ensure effective response. Critical to this assessment was the recognition of how response activities (i.e., infrastructure support, logistics, and workforce supplementation) can be used or repurposed to support the strengthening of national laboratory systems during the postevent transition to capacity building and recovery. This report compares CDC's domestic and international laboratory response engagements and lessons learned that can improve future responses in support of the International Health Regulations and Global Health Security Agenda initiatives.The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html). |
Rift Valley fever virus: Unanswered questions
Bird BH , McElroy AK . Antiviral Res 2016 132 274-80 This mosquito-borne pathogen of humans and animals respects no international or geographic boundaries. It is currently found in parts of Africa, Madagascar, and the Arabian Peninsula where periodic outbreaks of severe and fatal disease occur, and threatens to spread into other geographic regions. In recent years, modern molecular techniques have led to many breakthroughs deepening our understanding of the mechanisms of RVFV virulence, phylogenetics, and the creation of several next-generation vaccine candidates. Despite tremendous progress in these areas, other challenges remain in RVF disease pathogenesis, the virus life-cycle, and outbreak response preparedness that deserve our attention. Here we discuss and highlight ten key knowledge gaps and challenges in RVFV research. Answers to these key questions may lead to the development of new effective therapeutics and enhanced control strategies for this serious human and veterinary health threat. |
Effect of Vandetanib on Andes virus survival in the hamster model of Hantavirus pulmonary syndrome
Bird BH , Shrivastava-Ranjan P , Dodd KA , Erickson BR , Spiropoulou CF . Antiviral Res 2016 132 66-69 Hantavirus pulmonary syndrome (HPS) is a severe disease caused by hantavirus infection of pulmonary microvascular endothelial cells leading to microvascular leakage, pulmonary edema, pleural effusion and high case fatality. Previously, we demonstrated that Andes virus (ANDV) infection caused up-regulation of vascular endothelial growth factor (VEGF) and concomitant downregulation of the cellular adhesion molecule VE-cadherin leading to increased permeability. Analyses of human HPS-patient sera have further demonstrated increased circulating levels of VEGF. Here we investigate the impact of a small molecule antagonist of the VEGF receptor 2 (VEGFR-2) activation in vitro, and overall impact on survival in the Syrian hamster model of HPS. |
Humanized mouse model of Ebola virus disease mimics immune responses in human disease
Bird BH , Spengler JR , Chakrabarti AK , Khristova ML , Sealy TK , Coleman-McCray JD , Martin BE , Dodd KA , Goldsmith CS , Sanders J , Zaki SR , Nichol ST , Spiropoulou CF . J Infect Dis 2015 213 (5) 703-11 Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not cause disease in immunocompetent adult rodents without adaptation. Here we describe EVD in humanized BLT mice (hu-BLT) engrafted with human immune cells. Hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathology similar to that shown in the limited human post-mortem data available. A dose- and donor- dependent clinical course was observed in hu-BLT infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as non-engrafted mice did not support productive EBOV replication or develop lethal disease. Hu-BLT mice offer a unique model for investigating the human immune response in EVD; and offer an alternative animal model for EVD pathogenesis studies and therapeutic screening. |
Utility of oral swab sampling for Ebola virus detection in Guinea pig model
Spengler JR , Chakrabarti AK , Coleman-McCray JD , Martin BE , Nichol ST , Spiropoulou CF , Bird BH . Emerg Infect Dis 2015 21 (10) 1816-9 To determine the utility of oral swabs for diagnosing infection with Ebola virus, we used a guinea pig model and obtained daily antemortem and postmortem swab samples. According to quantitative reverse transcription PCR analysis, the diagnostic value was poor for antemortem swab samples but excellent for postmortem samples. |
Ebola virus diagnostics: the US Centers for Disease Control and Prevention laboratory in Sierra Leone, August 2014 to March 2015
Flint M , Goodman CH , Bearden S , Blau DM , Amman BR , Basile AJ , Belser JA , Bergeron E , Bowen MD , Brault AC , Campbell S , Chakrabarti AK , Dodd KA , Erickson BR , Freeman MM , Gibbons A , Guerrero LW , Klena JD , Lash RR , Lo MK , McMullan LK , Momoh G , Massally JL , Goba A , Paddock CD , Priestley RA , Pyle M , Rayfield M , Russell BJ , Salzer JS , Sanchez AJ , Schuh AJ , Sealy TK , Steinau M , Stoddard RA , Taboy C , Turnsek M , Wang D , Zemtsova GE , Zivcec M , Spiropoulou CF , Stroher U , Towner JS , Nichol ST , Bird BH . J Infect Dis 2015 212 Suppl 2 S350-8 In August 2014, the Viral Special Pathogens Branch of the US Centers for Disease Control and Prevention established a field laboratory in Sierra Leone in response to the ongoing Ebola virus outbreak. Through March 2015, this laboratory tested >12 000 specimens from throughout Sierra Leone. We describe the organization and procedures of the laboratory located in Bo, Sierra Leone. |
A Recently Discovered Pathogenic Paramyxovirus, Sosuga Virus, is Present in Rousettus aegyptiacus Fruit Bats at Multiple Locations in Uganda.
Amman BR , Albarino CG , Bird BH , Nyakarahuka L , Sealy TK , Balinandi S , Schuh AJ , Campbell SM , Stroher U , Jones ME , Vodzack ME , Reeder DM , Kaboyo W , Nichol ST , Towner JS . J Wildl Dis 2015 51 (3) 774-9 ![]() In August 2012, a wildlife biologist became ill immediately following a 6-wk field trip to collect bats and rodents in South Sudan and Uganda. After returning to the US, the biologist was admitted to the hospital with multiple symptoms including fever, malaise, headache, generalized myalgia and arthralgia, stiffness in the neck, and sore throat. Soon after admission, the patient developed a maculopapular rash and oropharynx ulcerations. The patient remained hospitalized for 14 d. Several suspect pathogens, including viral hemorrhagic fever viruses such as Ebola viruses and Marburg viruses, were ruled out through standard diagnostic testing. However, deep sequencing and metagenomic analyses identified a novel paramyxovirus, later named Sosuga virus, in the patient's blood. To determine the potential source, bat tissues collected during the 3-wk period just prior to the onset of symptoms were tested for Sosuga virus, and several Egyptian rousette bats (Rousettus aegyptiacus) were found to be positive. Further analysis of archived Egyptian rousette tissues collected at other localities in Uganda found additional Sosuga virus-positive bats, suggesting this species could be a potential natural reservoir for this novel paramyxovirus. |
Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters
Lo MK , Bird BH , Chattopadhyay A , Drew CP , Martin BE , Coleman JD , Rose JK , Nichol ST , Spiropoulou CF . Antiviral Res 2014 101 26-9 Nipah virus (NiV) continues to cause outbreaks of fatal human encephalitis due to spillover from its bat reservoir. We determined that a single dose of replication-defective vesicular stomatitis virus (VSV)-based vaccine vectors expressing either the NiV fusion (F) or attachment (G) glycoproteins protected hamsters from over 1000 times LD50 NiV challenge. This highly effective single-dose protection coupled with an enhanced safety profile makes these candidates ideal for potential use in livestock and humans. |
Oral shedding of Marburg virus in experimentally infected Egyptian Fruit Bats (Rousettus aegyptiacus)
Amman BR , Jones ME , Sealy TK , Uebelhoer LS , Schuh AJ , Bird BH , Coleman-McCray JD , Martin BE , Nichol ST , Towner JS . J Wildl Dis 2014 51 (1) 113-24 Marburg virus (Marburg marburgvirus; MARV) causes sporadic outbreaks of Marburg hemorrhagic fever (MHF) in Africa. The Egyptian fruit bat (Rousettus aegyptiacus) has been identified as a natural reservoir based most-recently on the repeated isolation of MARV directly from bats caught at two locations in southwestern Uganda where miners and tourists separately contracted MHF from 2007-2008. Despite learning much about the ecology of MARV through extensive field investigations, there remained unanswered questions such as determining the primary routes of virus shedding and the severity of disease, if any, caused by MARV in infected bats. To answer these questions and others, we experimentally infected captive-bred R. aegyptiacus with MARV under high (biosafety level 4) containment. These experiments have shown infection profiles consistent with R. aegyptiacus being a bona fide natural reservoir host for MARV and shown routes of viral shedding capable of infecting humans and other animals. |
Kyasanur Forest disease virus infection in mice is associated with higher morbidity and mortality than infection with the closely related Alkhurma hemorrhagic fever virus
Dodd KA , Bird BH , Jones ME , Nichol ST , Spiropoulou CF . PLoS One 2014 9 (6) e100301 BACKGROUND: Kyasanur Forest disease virus (KFDV) and Alkhurma hemorrhagic fever virus (AHFV) are closely related members of the Flavivirus genus and are important causes of human disease in India and the Arabian Peninsula, respectively. Despite high genetic similarity, the viruses have distinctly different host ranges and ecologies. Human cases of KFDV or AHFV develop a spectrum of disease syndromes ranging from liver pathology to neurologic disease. Case reports suggest KFDV is more commonly associated with hepatic and gastrointestinal manifestations whereas AHFV is more commonly associated with neurologic disease. METHODOLOGY/PRINCIPAL FINDINGS: Inoculation of three immunocompetent laboratory mouse strains revealed that KFDV was consistently more lethal than AHFV. In subsequent studies utilizing C57BL/6J mice, we demonstrated that KFDV infection was associated with higher viral loads and significantly higher mortality. KFDV-infected mice rapidly developed more severe disease than AHFV-infected mice, as evidenced by significant abnormalities on clinical chemistry panels and more severe pathology in the brain and gastrointestinal tract. CONCLUSIONS/SIGNIFICANCE: Infections of C57BL/6J mice with KFDV or AHFV resulted in clinical disease syndromes that closely approximate the diseases seen in human cases. Despite high genetic similarity, there were clear differences in survival, viral kinetics, clinical chemistry data and histology. These results suggest that distinct mouse models for AHFV and KFDV are necessary in order to gain a better understanding of the unique pathogenesis of each virus, as well as to provide platforms for testing promising vaccines and therapeutics. |
Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses.
Flint M , McMullan LK , Dodd KA , Bird BH , Khristova M , Nichol ST , Spiropoulou CF . Antimicrob Agents Chemother 2014 58 (6) 3206-16 No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-azauridine (6-azaU), 2' -C-methylcytidine (2' -CMC), and interferon-alpha2a (IFNalpha) inhibited the replication of AHFV and also KFDV, OHFV and Powassan virus. The combination of IFNalpha and 2' -CMC exerted an additive antiviral effect on AHFV and the combination of IFNalpha and 6-azaU was moderately synergistic. The combination of 2' -CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine, but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2' -CMC, AHFV variants with reduced susceptibility to 2' -CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant S603T/C666S and a triple mutant S603T/C666S/M644V were more resistant to 2' -CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, though the replication of this triple mutant was still below that of wild-type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2' -CMC. |
Novel paramyxovirus associated with severe acute febrile disease, South Sudan and Uganda, 2012
Albarino CG , Foltzer M , Towner JS , Rowe LA , Campbell S , Jaramillo CM , Bird BH , Reeder DM , Vodzak ME , Rota P , Metcalfe MG , Spiropoulou CF , Knust B , Vincent JP , Frace MA , Nichol ST , Rollin PE , Stroher U . Emerg Infect Dis 2014 20 (2) 211-6 In 2012, a female wildlife biologist experienced fever, malaise, headache, generalized myalgia and arthralgia, neck stiffness, and a sore throat shortly after returning to the United States from a 6-week field expedition to South Sudan and Uganda. She was hospitalized, after which a maculopapular rash developed and became confluent. When the patient was discharged from the hospital on day 14, arthralgia and myalgia had improved, oropharynx ulcerations had healed, the rash had resolved without desquamation, and blood counts and hepatic enzyme levels were returning to reference levels. After several known suspect pathogens were ruled out as the cause of her illness, deep sequencing and metagenomics analysis revealed a novel paramyxovirus related to rubula-like viruses isolated from fruit bats. |
Deletion of the NSm virulence gene of Rift Valley fever virus inhibits virus replication in and dissemination from the midgut of Aedes aegypti mosquitoes.
Kading RC , Crabtree MB , Bird BH , Nichol ST , Erickson BR , Horiuchi K , Biggerstaff BJ , Miller BR . PLoS Negl Trop Dis 2014 8 (2) e2670 ![]() BACKGROUND: Previously, we investigated the role of the Rift Valley fever virus (RVFV) virulence genes NSs and NSm in mosquitoes and demonstrated that deletion of NSm significantly reduced the infection, dissemination, and transmission rates of RVFV in Aedes aegypti mosquitoes. The specific aim of this study was to further characterize midgut infection and escape barriers of RVFV in Ae. aegypti infected with reverse genetics-generated wild type RVFV (rRVF-wt) or RVFV lacking the NSm virulence gene (rRVF-DeltaNSm) by examining sagittal sections of infected mosquitoes for viral antigen at various time points post-infection. METHODOLOGY AND PRINCIPAL FINDINGS: Ae. aegypti mosquitoes were fed an infectious blood meal containing either rRVF-wt or rRVF-DeltaNSm. On days 0, 1, 2, 3, 4, 6, 8, 10, 12, and 14 post-infection, mosquitoes from each experimental group were fixed in 4% paraformaldehyde, paraffin-embedded, sectioned, and examined for RVFV antigen by immunofluorescence assay. Remaining mosquitoes at day 14 were assayed for infection, dissemination, and transmission. Disseminated infections were observed in mosquitoes as early as three days post infection for both virus strains. However, infection rates for rRVF-DeltaNSm were statistically significantly less than for rRVF-wt. Posterior midgut infections in mosquitoes infected with rRVF-wt were extensive, whereas midgut infections of mosquitoes infected with rRVF-DeltaNSm were confined to one or a few small foci. CONCLUSIONS/SIGNIFICANCE: Deletion of NSm resulted in the reduced ability of RVFV to enter, replicate, and disseminate from the midgut epithelial cells. NSm appears to have a functional role in the vector competence of mosquitoes for RVFV at the level of the midgut barrier. |
Severe hemorrhagic fever in strain 13/n guinea pigs infected with Lujo virus
Bird BH , Dodd KA , Erickson BR , Albarino CG , Chakrabarti AK , McMullan LK , Bergeron E , Stroeher U , Cannon D , Martin B , Coleman-McCray JD , Nichol ST , Spiropoulou CF . PLoS Negl Trop Dis 2012 6 (8) e1801 Lujo virus (LUJV) is a novel member of the Arenaviridae family that was first identified in 2008 after an outbreak of severe hemorrhagic fever (HF). In what was a small but rapidly progressing outbreak, this previously unknown virus was transmitted from the critically ill index patient to 4 attending healthcare workers. Four persons died during this outbreak, for a total case fatality of 80% (4/5). The suspected rodent source of the initial exposure to LUJV remains a mystery. Because of the ease of transmission, high case fatality, and novel nature of LUJV, we sought to establish an animal model of LUJV HF. Initial attempts in mice failed, but infection of inbred strain 13/N guinea pigs resulted in lethal disease. A total of 41 adult strain 13/N guinea pigs were infected with either wild-type LUJV or a full-length recombinant LUJV. Results demonstrated that strain 13/N guinea pigs provide an excellent model of severe and lethal LUJV HF that closely resembles what is known of the human disease. All infected animals experienced consistent weight loss (3-5% per day) and clinical illness characterized by ocular discharge, ruffled fur, hunched posture, and lethargy. Uniform lethality occurred by 11-16 days post-infection. All animals developed disseminated LUJV infection in various organs (liver, spleen, lung, and kidney), and leukopenia, lymphopenia, thrombocytopenia, coagulopathy, and elevated transaminase levels. Serial euthanasia studies revealed a temporal pattern of virus dissemination and increasing severity of disease, primarily targeting the liver, spleen, lungs, and lower gastrointestinal tract. Establishing an animal LUJV model is an important first step towards understanding the high pathogenicity of LUJV and developing vaccines and antiviral therapeutic drugs for this highly transmissible and lethal emerging pathogen. |
Reverse genetics recovery of Lujo virus and role of virus RNA secondary structures in efficient virus growth.
Bergeron E , Chakrabarti AK , Bird BH , Dodd KA , McMullan LK , Spiropoulou CF , Nichol ST , Albarino CG . J Virol 2012 86 (19) 10759-65 ![]() Arenaviruses are rodent-borne viruses with a bisegmented RNA genome. A genetically unique arenavirus, Lujo virus, was recently discovered as the causal agent of a nosocomial outbreak of acute febrile illness with hemorrhagic manifestations in Zambia and South Africa. The outbreak had a case fatality of 80%. A reverse genetics system to rescue infectious Lujo virus from cDNA was established to investigate the biological properties of this virus. Sequencing the genomic termini showed unique nucleotides at the 3' terminus of the S segment promoter element. While developing this system, we discovered that reconstructing infectious Lujo virus using the previously reported L segment intergenic region (IGR), comprising the arenaviral transcription termination signal, yielded an attenuated Lujo virus. Resequencing revealed that the correct L segment IGR was 36 nucleotide longer, and incorporating it into the reconstructed Lujo virus restored growth rate to that of the authentic clinical virus isolate. These additional nucleotides were predicted to more than double the free energy of the IGR main stem-loop structure. In addition, incorporating the newly determined L-IGR into a replicon reporter system enhanced the expression of a luciferase reporter L segment. Overall, these results imply that an extremely stable secondary structure within the L-IGR is critical for Lujo virus propagation and viral protein production. The technology for producing recombinant Lujo virus now provides a method to precisely investigate the molecular determinants of virulence of this newly identified pathogen. |
Single-dose immunization with virus replicon particles confers rapid robust protection against Rift Valley fever virus challenge
Dodd KA , Bird BH , Metcalfe MG , Nichol ST , Albarino CG . J Virol 2012 86 (8) 4204-12 ![]() Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRP(RVF)) vaccine candidate. Using a mouse model, we show that VRP(RVF) immunization provides the optimal balance of safety and single-dose robust efficacy. VRP(RVF) can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRP(RVF) proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRP(RVF), although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD(50)). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRP(RVF) immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection. |
Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.
Crabtree MB , Kent Crockett RJ , Bird BH , Nichol ST , Erickson BR , Biggerstaff BJ , Horiuchi K , Miller BR . PLoS Negl Trop Dis 2012 6 (5) e1639 ![]() BACKGROUND: Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. METHODOLOGY AND PRINCIPAL FINDINGS: Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. CONCLUSIONS/SIGNIFICANCE: In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes. |
Breaking the chain: Rift Valley fever virus control via livestock vaccination
Bird BH , Nichol ST . Curr Opin Virol 2012 2 (3) 315-23 Rift Valley fever virus is a mosquito-borne pathogen of livestock and humans that causes widespread and devastating outbreaks of severe and often fatal disease throughout Africa and portions of the Arabian Peninsula. Outbreaks can involve tens to hundreds of thousands of human cases, and millions of livestock. The severity of the disease varies by species, but in sheep and cattle 'abortion storms', high neonatal ( approximately 70%), and adult mortality (20-30%) are features. Human cases are generally self-limiting, but severe complications such as hepatitis, retinitis, delayed-onset encephalitis, or a hemorrhagic syndrome with a case fatality of 10-20% can occur. There are no commercially available human vaccines. Livestock provide key ecological links between the Aedes sp. mosquito vector and humans. High viremias in livestock lead to spillover of RVFV into other anthrophillic vectors (Culex and Anopheles sp. mosquitoes), and, importantly, close contact with infected animal tissues and fluids or aborted fetal materials from these animals is a major risk factor for severe and lethal human infections. Vaccination programs targeting livestock during non-epidemic periods or as an early countermeasure against nascent outbreaks could therefore eliminate one of the main sources of human infection and limit the overall scope of epidemics. To this end, research groups have recently reported novel next generation RVFV vaccines that are safe for use in pregnant and young animals. Preventing RVFV infection of livestock by vaccination is a key element in breaking the chain of human epidemics, and could lead to control of this significant public health threat. |
Development of a novel nonhuman primate model for Rift Valley fever
Smith DR , Bird BH , Lewis B , Johnston SC , McCarthy S , Keeney A , Botto M , Donnelly G , Shamblin J , Albarino CG , Nichol ST , Hensley LE . J Virol 2012 86 (4) 2109-20 Rift Valley fever (RVF) virus (RVFV) can cause severe human disease characterized by either acute-onset hepatitis, delayed-onset encephalitis, retinitis and blindness, or a hemorrhagic syndrome. The existing nonhuman primate (NHP) model for RVF utilizes an intravenous (i.v.) exposure route in rhesus macaques (Macaca mulatta). Severe disease in these animals is infrequent, and large cohorts are needed to observe significant morbidity and mortality. To overcome these drawbacks, we evaluated the infectivity and pathogenicity of RVFV in the common marmoset (Callithrix jacchus) by i.v., subcutaneous (s.c.), and intranasal exposure routes to more closely mimic natural exposure. Marmosets were more susceptible to RVFV than rhesus macaques and experienced higher rates of morbidity, mortality, and viremia and marked aberrations in hematological and chemistry values. An overwhelming infection of hepatocytes was a major consequence of infection of marmosets by the i.v. and s.c. exposure routes. Additionally, these animals displayed signs of hemorrhagic manifestations and neurological impairment. Based on our results, the common marmoset model more closely resembles severe human RVF disease and is therefore an ideal model for the evaluation of potential vaccines and therapeutics. |
Rift Valley fever virus vaccine lacking the NSs and NSm genes is safe, nonteratogenic, and confers protection from viremia, pyrexia, and abortion following challenge in adult and pregnant sheep.
Bird BH , Maartens LH , Campbell S , Erasmus BJ , Erickson BR , Dodd KA , Spiropoulou CF , Cannon D , Drew CP , Knust B , McElroy AK , Khristova ML , Albarino CG , Nichol ST . J Virol 2011 85 (24) 12901-9 ![]() Rift Valley fever virus (RVFV) is a mosquito-borne human and veterinary pathogen causing large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Safe and effective vaccines are critically needed, especially those that can be used in a targeted one-health approach to prevent both livestock and human disease. We report here on the safety, immunogenicity, and efficacy of the DeltaNSs-DeltaNSm recombinant RVFV (rRVFV) vaccine (which lacks the NSs and NSm virulence factors) in a total of 41 sheep, including 29 timed-pregnant ewes. This vaccine was proven safe and immunogenic for adult animals at doses ranging from 1.0 x 10(3) to 1.0 x 10(5) PFU administered subcutaneously (s.c.). Pregnant animals were vaccinated with 1.0 x 10(4) PFU s.c. at day 42 of gestation, when fetal sensitivity to RVFV vaccine-induced teratogenesis is highest. No febrile reactions, clinical illness, or pregnancy loss was observed following vaccination. Vaccination resulted in a rapid increase in anti-RVFV IgM (day 4) and IgG (day 7) titers. No seroconversion occurred in cohoused control animals. A subset of 20 ewes progressed to full-term delivery after vaccination. All lambs were born without musculoskeletal, neurological, or histological birth defects. Vaccine efficacy was assessed in 9 pregnant animals challenged at day 122 of gestation with virulent RVFV (1.0 x 10(6) PFU intravenously). Following challenge, 100% (9/9) of the animals were protected, progressed to full term, and delivered healthy lambs. As expected, all 3 sham-vaccinated controls experienced viremia, fetal death, and abortion postchallenge. These results demonstrate that the DeltaNSs-DeltaNSm rRVFV vaccine is safe and nonteratogenic and confers high-level protection in sheep. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure