Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-30 (of 148 Records) |
Query Trace: Bird B[original query] |
---|
Transmission of a human isolate of clade 2.3.4.4b A(H5N1) virus in ferrets
Pulit-Penaloza JA , Belser JA , Brock N , Kieran TJ , Sun X , Pappas C , Zeng H , Carney P , Chang J , Bradley-Ferrell B , Stevens J , De La Cruz JA , Hatta Y , Di H , Davis CT , Tumpey TM , Maines TR . Nature 2024 Since 2020, there has been unprecedented global spread of highly pathogenic avian influenza A(H5N1) in wild bird populations with spillover into a variety of mammalian species and sporadically humans(1). In March 2024, clade 2.3.4.4b A(H5N1) virus was first detected in dairy cattle in the U.S., with subsequent detection in numerous states(2), leading to over a dozen confirmed human cases(3,4). In this study, we employed the ferret model, a well-characterized species that permits concurrent investigation of viral pathogenicity and transmissibility(5) in the evaluation of A/Texas/37/2024 (TX/37) A(H5N1) virus isolated from a dairy farm worker in Texas(6). Here, we show that the virus has a remarkable ability for robust systemic infection in ferrets, leading to high levels of virus shedding and spread to naïve contacts. Ferrets inoculated with TX/37 rapidly exhibited a severe and fatal infection, characterized by viremia and extrapulmonary spread. The virus efficiently transmitted in a direct contact setting and was capable of indirect transmission via fomites. Airborne transmission was corroborated by the detection of infectious virus shed into the air by infected animals, albeit at lower levels compared to the highly transmissible human seasonal and swine-origin H1 subtype strains. Our results show that despite maintaining an avian-like receptor binding specificity, TX/37 displays heightened virulence, transmissibility, and airborne shedding relative to other clade 2.3.4.4b virus isolated prior to the 2024 cattle outbreaks(7), underscoring the need for continued public health vigilance. |
Characterization of avian influenza viruses detected in Kenyan live bird markets and wild bird habitats reveal genetically diverse subtypes and high proportion of A(H9N2), 2018-2020
Munyua P , Osoro E , Jones J , Njogu G , Yang G , Hunsperger E , Szablewski CM , Njoroge R , Marwanga D , Oyas H , Andagalu B , Ndanyi R , Otieno N , Obanda V , Nasimiyu C , Njagi O , DaSilva J , Jang Y , Barnes J , Emukule GO , Onyango CO , Davis CT . Viruses 2024 16 (9) Following the detection of highly pathogenic avian influenza (HPAI) virus in countries bordering Kenya to the west, we conducted surveillance among domestic and wild birds along the shores of Lake Victoria. In addition, between 2018 and 2020, we conducted surveillance among poultry and poultry workers in live bird markets and among wild migratory birds in various lakes that are resting sites during migration to assess introduction and circulation of avian influenza viruses in these populations. We tested 7464 specimens (oropharyngeal (OP) and cloacal specimens) from poultry and 6531 fresh fecal specimens from wild birds for influenza A viruses by real-time RT-PCR. Influenza was detected in 3.9% (n = 292) of specimens collected from poultry and 0.2% (n = 10) of fecal specimens from wild birds. On hemagglutinin subtyping, most of the influenza A positives from poultry (274/292, 93.8%) were H9. Of 34 H9 specimens randomly selected for further subtyping, all were H9N2. On phylogenetic analysis, these viruses were genetically similar to other H9 viruses detected in East Africa. Only two of the ten influenza A-positive specimens from the wild bird fecal specimens were successfully subtyped; sequencing analysis of one specimen collected in 2018 was identified as a low-pathogenicity avian influenza H5N2 virus of the Eurasian lineage, and the second specimen, collected in 2020, was subtyped as H11. A total of 18 OP and nasal specimens from poultry workers with acute respiratory illness (12%) were collected; none were positive for influenza A virus. We observed significant circulation of H9N2 influenza viruses in poultry in live bird markets in Kenya. During the same period, low-pathogenic H5N2 virus was detected in a fecal specimen collected in a site hosting a variety of migratory and resident birds. Although HPAI H5N8 was not detected in this survey, these results highlight the potential for the introduction and establishment of highly pathogenic avian influenza viruses in poultry populations and the associated risk of spillover to human populations. |
The panzootic spread of highly pathogenic avian influenza H5N1 sublineage 2.3.4.4b: a critical appraisal of One Health preparedness and prevention
Koopmans MPG , Barton Behravesh C , Cunningham AA , Adisasmito WB , Almuhairi S , Bilivogui P , Bukachi SA , Casas N , Cediel Becerra N , Charron DF , Chaudhary A , Ciacci Zanella JR , Dar O , Debnath N , Dungu B , Farag E , Gao GF , Khaitsa M , Machalaba C , Mackenzie JS , Markotter W , Mettenleiter TC , Morand S , Smolenskiy V , Zhou L , Hayman DTS . Lancet Infect Dis 2024 Changes in the epidemiology and ecology of H5N1 highly pathogenic avian influenza are devastating wild bird and poultry populations, farms and communities, and wild mammals worldwide. Having originated in farmed poultry, H5N1 viruses are now spread globally by wild birds, with transmission to many mammal and avian species, resulting in 2024 in transmission among dairy cattle with associated human cases. These ecological changes pose challenges to mitigating the impacts of H5N1 highly pathogenic avian influenza on wildlife, ecosystems, domestic animals, food security, and humans. H5N1 highly pathogenic avian influenza highlights the need for One Health approaches to pandemic prevention and preparedness, emphasising multisectoral collaborations among animal, environmental, and public health sectors. Action is needed to reduce future pandemic risks by preventing transmission of highly pathogenic avian influenza among domestic and wild animals and people, focusing on upstream drivers of outbreaks, and ensuring rapid responses and risk assessments for zoonotic outbreaks. Political commitment and sustainable funding are crucial to implementing and maintaining prevention programmes, surveillance, and outbreak responses. |
Evaluation of coccidia DNA in irrigation pond water and wastewater sludge associated with Cyclospora cayetanensis 18S rRNA gene qPCR detections
Hofstetter J , Arfken A , Kahler A , Qvarnstrom Y , Rodrigues C , Mattioli M . Microbiol Spectr 2024 e0090624 The coccidian parasite Cyclospora cayetanensis is the causative agent for foodborne outbreaks of cyclosporiasis disease and multiple annual fresh produce recalls. The aim of this study was to identify potential cross-reacting species for the C. cayetanensis 18S rRNA and MIT1C gene target real-time quantitative polymerase chain reaction (qPCR) assays. The environmental samples evaluated were irrigation pond water, produce wash water, and wastewater treatment sludge from a previous study with qPCR detections of C. cayetanensis by the 18S rRNA gene target qPCR. From these samples, longer regions of the 18S rRNA gene and the mitochondrial cytochrome c oxidase subunit III gene (cox3) were sequenced. Of 65 irrigation pond water samples with positive test results using the C. cayetanensis 18S rRNA gene qPCR assay, none had MIT1C qPCR assay detections or sequences that clustered with C. cayetanensis based on sequencing of the cox3 and 18S rRNA gene. Sequences from these samples clustered around coccidia sequences found in bird, fish, reptile, and amphibian hosts. Of 26 sludge samples showing detections by either qPCR assay, 14 (54%) could be confirmed as containing C. cayetanensis by sequencing of cox3 and 18S rRNA gene regions. In three of the remaining sludge samples, sequenced reads clustered with coccidia from rodents. This study demonstrated that caution should be taken when interpreting qPCR C. cayetanensis detection data in environmental samples and sequencing steps will likely be needed for confirmation. IMPORTANCE: Fresh produce is a leading transmission source in cyclosporiasis outbreaks. It is therefore essential to understand the role that produce-growing environments play in the spread of this disease. To accomplish this, sensitive and specific tests for environmental and irrigation waters must be developed. Potential cross-reactions of Cyclospora cayetanensis real-time quantitative polymerase chain reaction (qPCR) assays have been identified, hindering the ability to accurately identify this parasite in the environment. Amplicon sequencing of the cox3 and 18S rRNA genes revealed that all irrigation pond water and two sludge samples that initially detected C. cayetanensis by qPCR were most likely cross-reactions with related coccidian organisms shed from birds, fish, reptiles, amphibians, and rodents. These results support that a single testing method for environmental samples is likely not adequate for sensitive and specific detection of C. cayetanensis. |
Auspicious symbols of rank and status
Breedlove B , Fung ICH . Emerg Infect Dis 2020 26 (5) 1056-1057 While walking along the bustling streets of Beijing, Chengde, Shenyang, Wuhan, or other Chinese cities during the Qing dynasty (1644–1911), people would regularly brush past bats, cranes, pheasants, peacocks, egrets, or ducks; slow their step so a lion, leopard, tiger, rhinoceros, or bear could hurry past; or yield to allow passage to a dragon, unicorn, or qilin (a chimera with horns, a dragon’s head, fish scales, an oxen’s tail, horse’s hooves, and multicolored skin). Of course, it was not those actual animals jostling their way through the crowded causeways but rather myriad Chinese statesmen, civic officials, military officers, and members of the imperial court, as well as their wives, all of whom indicated their rank and status by wearing embroidered badges featuring images of those creatures on their outer coats. | | From the late 14th century until the early 20th century ce, these ornate rank badges (called buzi or Mandarin squares) featured fierce animals to denote military officials, various bird species to identify civic officials, and exotic and imaginary creatures to signify members of the imperial court. Art historian Mary Dusenbury writes, “Qing badges generally include an abbreviated cosmic diagram with an earth-mountain in the lower center, and a multitude of auspicious symbols filling up the surrounding space. In the center, the animal or bird looks up at a prominent red sun, symbol of the emperor.” |
Environmental surveillance and detection of infectious highly pathogenic avian influenza virus in Iowa Wetlands
Hubbard LE , Givens CE , Stelzer EA , Killian ML , Kolpin DW , Szablewski CM , Poulson RL . Environ Sci Technol Lett 2023 10 (12) 1181-1187 Avian influenza viruses (AIVs) infect both wild birds and domestic poultry, resulting in economically costly outbreaks that have the potential to impact public health. Currently, a knowledge gap exists regarding the detection of infectious AIVs in the aquatic environment. In response to the 2021-2022 Eurasian strain highly pathogenic avian influenza (HPAI) A/goose/Guangdong/1/1996 clade 2.3.4.4 lineage H5 outbreak, an AIV environmental outbreak response study was conducted using a One Health approach. An optimized method was used to temporally sample (April and May 2022) and analyze (culture and molecular methods) surface water from five water bodies (four wetlands and one lake used as a comparison location) in areas near confirmed HPAI detections in wild bird or poultry operations. Avian influenza viruses were isolated from water samples collected in April from all four wetlands (not from the comparison lake sample); HPAI H5N1 was isolated from one wetland. No virus was isolated from the May samples. Several factors, including increased water temperatures, precipitation, biotic and abiotic factors, and absence of AIV-contaminated fecal material due to fewer waterfowl present, may have contributed to the lack of virus isolation from May samples. Results demonstrate surface water as a plausible medium for transmission of AIVs, including the HPAI virus. |
Avian influenza A(H5) virus circulation in live bird markets in Vietnam, 2017-2022
Nguyen DT , Sumner KM , Nguyen TTM , Phan MQ , Hoang TM , Vo CD , Nguyen TD , Nguyen PT , Yang G , Jang Y , Jones J , Olsen SJ , Gould PL , Nguyen LV , Davis CT . Influenza Other Respir Viruses 2023 17 (12) e13245 BACKGROUND: Highly pathogenic avian influenza A(H5) human infections are a global concern, with many A(H5) human cases detected in Vietnam, including a case in October 2022. Using avian influenza virus surveillance from March 2017-September 2022, we described the percent of pooled samples that were positive for avian influenza A, A(H5), A(H5N1), A(H5N6), and A(H5N8) viruses in live bird markets (LBMs) in Vietnam. METHODS: Monthly at each LBM, 30 poultry oropharyngeal swab specimens and five environmental samples were collected. Samples were pooled in groups of five and tested for influenza A, A(H5), A(H5N1), A(H5N6), and A(H5N8) viruses by real-time reverse-transcription polymerase chain reaction. Trends in the percent of pooled samples that were positive for avian influenza were summarized by LBM characteristics and time and compared with the number of passively detected avian influenza outbreaks using Spearman's rank correlation. RESULTS: A total of 25,774 pooled samples were collected through active surveillance at 167 LBMs in 24 provinces; 36.9% of pooled samples were positive for influenza A, 3.6% A(H5), 1.9% A(H5N1), 1.1% A(H5N6), and 0.2% A(H5N8). Influenza A(H5) viruses were identified January-December and at least once in 91.7% of sampled provinces. In 246 A(H5) outbreaks in poultry; 20.3% were influenza A(H5N1), 60.2% A(H5N6), and 19.5% A(H5N8); outbreaks did not correlate with active surveillance. CONCLUSIONS: In Vietnam, influenza A(H5) viruses were detected by active surveillance in LBMs year-round and in most provinces sampled. In addition to outbreak reporting, active surveillance for A(H5) viruses in settings with high potential for animal-to-human spillover can provide situational awareness. |
Human salmonellosis outbreak linked to salmonella typhimurium epidemic in wild songbirds, United States, 2020-2021
Patel K , Stapleton GS , Trevejo RT , Tellier WT , Higa J , Adams JK , Hernandez SM , Sanchez S , Nemeth NM , Debess EE , Rogers KH , Mete A , Watson KD , Foss L , Low MSF , Gollarza L , Nichols M . Emerg Infect Dis 2023 29 (11) 2298-2306 Salmonella infection causes epidemic death in wild songbirds, with potential to spread to humans. In February 2021, public health officials in Oregon and Washington, USA, isolated a strain of Salmonella enterica serovar Typhimurium from humans and a wild songbird. Investigation by public health partners ultimately identified 30 illnesses in 12 states linked to an epidemic of Salmonella Typhimurium in songbirds. We report a multistate outbreak of human salmonellosis associated with songbirds, resulting from direct handling of sick and dead birds or indirect contact with contaminated birdfeeders. Companion animals might have contributed to the spread of Salmonella between songbirds and patients; the outbreak strain was detected in 1 ill dog, and a cat became ill after contact with a wild bird. This outbreak highlights a One Health issue where actions like regular cleaning of birdfeeders might reduce the health risk to wildlife, companion animals, and humans. |
Interpretation of molecular detection of avian influenza A virus in respiratory specimens collected from live bird market workers in Dhaka, Bangladesh: Infection or contamination
Hassan DMZ , Sturm-Ramirez DK , Islam DMS , Afreen DS , Rahman DMZ , Kafi MAH , Chowdhury DS , Khan SU , Rahman DM , Nasreen DS , Davis DCT , Levine DMZ , Rahman DM , Luby DSP , Azziz-Baumgartner DE , Iuliano DAD , Uyeki DTM , Gurley DES . Int J Infect Dis 2023 136 22-28 BACKGROUND: Interpreting rRT-PCR results for human avian influenza A virus (AIV) detection in contaminated settings like live bird markets (LBMs) without serology or viral culture poses a challenge. METHODS: During February-March 2012 and November 2012-February 2013, we screened workers at nine LBMs in Dhaka, Bangladesh to confirm molecular detections of AIV RNA in respiratory specimens with serology. We tested nasopharyngeal (NP) and throat swabs from workers with influenza-like-illness (ILI) and NP, throat, and arm swabs from asymptomatic workers for influenza virus by rRT-PCR and sera for seroconversion and antibodies against HPAI A(H5N1) and A(H9N2) viruses. RESULTS: Among 1,273 ILI cases, 34 (2.6%) had A(H5), 56 (4%) had A(H9), and 6 (0.4%) had both A(H5) and A(H9) detected by rRT-PCR. Of 192 asymptomatic workers, A(H5) was detected in 8 (4%) NP and 38 (20%) arm swabs. Of 28 ILI cases with A(H5) or A(H9) detected, none had evidence of seroconversion, but 1 (3.5%) and 12 (43%), were seropositive for A(H5) and A(H9), respectively. CONCLUSION: Detection of AIV RNA in respiratory specimens from symptomatic and asymptomatic LBM workers without evidence of seroconversion or virus isolation suggests environmental contamination, emphasizing caution in interpreting rRT-PCR results in high viral load settings. |
Quail rearing practices and potential for avian influenza virus transmission, Bangladesh
Hasan SMM , Sturm-Ramirez K , Kamal AM , Islam MA , Rahman M , Kile JC , Kennedy ED , Gurley ES , Islam MS . Ecohealth 2023 20 (2) 167-177 In 2015, human influenza surveillance identified a human infection with A/H9N2 in Dhaka, Bangladesh with evidence of exposure to a sick quail. We conducted in-depth interviews with household quail caregivers, pet bird retail shop owners, and mobile vendors, key informant interviews with pet bird wholesale shop owners, one group discussion with pet bird retail shop workers and unstructured observations in households, pet bird wholesale and retail markets, and mobile bird vendor's travelling areas to explore quail rearing and selling practices among households, mobile vendors, and retail pet bird and wholesale bird markets in Dhaka. Every day, quail were supplied from 23 districts to two wholesale markets, and then sold to households and restaurants directly, or through bird shops and mobile vendors. All respondents (67) reported keeping quail with other birds in cages, feeding quail, cleaning feeding pots, removing quail faeces, slaughtering sick quail, and discarding dead quail. Children played with quail and assisted in slaughtering of quail. Most respondents (94%) reported rinsing hands with water only after slaughtering and disposing of wastes and dead quail. No personal protective equipment was used during any activities. Frequent unprotected contact with quail and their by-products potentially increased the risk of cross-species avian influenza virus transmission. Avian influenza surveillance in retail pet bird and wholesale bird markets, mobile vendors, and households may identify cases promptly and reduce the risk of virus transmission. |
Predicted reduction in transmission from deployment of ivermectin-treated birdfeeders for local control of West Nile virus
Holcomb KM , Nguyen C , Komar N , Foy BD , Panella NA , Baskett ML , Barker CM . Epidemics 2023 44 100697 Ivermectin (IVM)-treated birds provide the potential for targeted control of Culex mosquitoes to reduce West Nile virus (WNV) transmission. Ingestion of IVM increases mosquito mortality, which could reduce WNV transmission from birds to humans and in enzootic maintenance cycles affecting predominantly bird-feeding mosquitoes and from birds to humans. This strategy might also provide an alternative method for WNV control that is less hampered by insecticide resistance and the logistics of large-scale pesticide applications. Through a combination of field studies and modeling, we assessed the feasibility and impact of deploying IVM-treated birdfeed in residential neighborhoods to reduce WNV transmission. We first tracked 105 birds using radio telemetry and radio frequency identification to monitor their feeder usage and locations of nocturnal roosts in relation to five feeder sites in a neighborhood in Fort Collins, Colorado. Using these results, we then modified a compartmental model of WNV transmission to account for the impact of IVM on mosquito mortality and spatial movement of birds and mosquitoes on the neighborhood level. We found that, while the number of treated lots in a neighborhood strongly influenced the total transmission potential, the arrangement of treated lots in a neighborhood had little effect. Increasing the proportion of treated birds, regardless of the WNV competency status, resulted in a larger reduction in infection dynamics than only treating competent birds. Taken together, model results indicate that deployment of IVM-treated feeders could reduce local transmission throughout the WNV season, including reducing the enzootic transmission prior to the onset of human infections, with high spatial coverage and rates of IVM-induced mortality in mosquitoes. To improve predictions, more work is needed to refine estimates of daily mosquito movement in urban areas and rates of IVM-induced mortality. Our results can guide future field trials of this control strategy. |
Application of environmental sampling to investigate a case of avian chlamydiosis in a pet store and breeding facility leading to mass bird exposures
Bonwitt J , Riethman M , Glashower D , Oltean HN , Wohrle R , Joseph B , McHale B , Ritchie B . Zoonoses Public Health 2023 70 (6) 572-577 Chlamydia psittaci is a bacterium that causes chlamydiosis in birds and can cause zoonotic psittacosis in people. In November 2017, we received notification of a suspected case of avian chlamydiosis in a captive cockatiel (Nymphicus hollandicus) that was sold by an online pet bird retail and breeding facility in Washington State. We describe the investigation with emphasis on how environmental sampling was used to guide veterinary and public health interventions. Bird samples were collected either from pooled droppings, pooled plumage or individual nasal and choanal swabs. Environmental samples were obtained by swabbing cleaning mops, tables and cage structures. All samples were tested by polymerase chain reaction and positive samples underwent genotyping. Approximately 1000 birds representing four taxonomic orders were kept within an open-space warehouse. Eight of 14 environmental samples and one of two pooled faecal samples were positive for Chlamydia spp. The contaminating strain of Chlamydia spp. was identified as genotype A. The facility was closed for environmental disinfection, and all psittacines were treated with oral doxycycline for 45 days. Ten of 10 environmental and two of two pooled faecal samples were negative for C. psittaci 11 months after the completion of environmental disinfection and antimicrobial treatment. This investigation highlights the importance of preventing and mitigating pathogen incursion in an online pet retail and breeding facility. Environmental sampling is valuable to guide animal and public health interventions for control of C. psittaci, particularly when large numbers of birds are exposed to the pathogen. |
Application of a universal parasite diagnostic test to biological specimens collected from animals.
Lane M , Kashani M , Barratt JL , Qvarnstrom Y , Yabsley MJ , Garrett KB , Bradbury RS . Int J Parasitol Parasites Wildl 2023 20 20-30 A previously described universal parasite diagnostic (nUPDx) based on PCR amplification of the 18S rDNA and deep-amplicon sequencing, can detect human blood parasites with a sensitivity comparable to real-time PCR. To date, the efficacy of this assay has only been assessed on human blood. This study assessed the utility of nUPDx for the detection of parasitic infections in animals using blood, tissues, and other biological sample types from mammals, birds, and reptiles, known to be infected with helminth, apicomplexan, or pentastomid parasites (confirmed by microscopy or PCR), as well as negative samples. nUPDx confirmed apicomplexan and/or nematode infections in 24 of 32 parasite-positive mammals, while also identifying several undetected coinfections. nUPDx detected infections in 6 of 13 positive bird and 1 of 2 positive reptile samples. When applied to 10 whole parasite specimens (worms and arthropods), nUPDx identified all to the genus or family level, and detected one incorrect identification made by morphology. Babesia sp. infections were detected in 5 of the 13 samples that were negative by other diagnostic approaches. While nUPDx did not detect PCR/microscopy-confirmed trichomonads or amoebae in cloacal swabs/tissue from 8 birds and 2 reptiles due to primer template mismatches, 4 previously undetected apicomplexans were detected in these samples. Future efforts to improve the utility of the assay should focus on validation against a larger panel of tissue types and animal species. Overall, nUPDx shows promise for use in both veterinary diagnostics and wildlife surveillance, especially because species-specific PCRs can miss unknown or unexpected pathogens. |
Comparison between Two Molecular Techniques: Nested and Real-Time Polymerase Chain Reaction Targeting 100-kDa Hc Protein for Detection of Histoplasma capsulatum in Environmental Samples.
Gmez LF , Gade L , Litvintseva AP , McEwen JG , Pelez CA , Arango M , Jimnez MDP . Am J Trop Med Hyg 2022 106 (5) 1329-32 Histoplasmosis, one of the most frequent endemic mycoses in the Americas, is caused by the inhalation of airborne conidia of Histoplasma capsulatum. Better understanding of the distribution of this fungus in the environment is important for the development of appropriate public health measures to prevent human infections. Previously, we used Hc100 nested polymerase chain reaction (PCR) to identify H. capsulatum DNA in 10% of environmental samples in Colombia. Here, we validate a 100-kDa real-time PCR assay for the detection of this fungus in the environment. Using this method, we identified H. capsulatum DNA in 80% of samples of raw organic materials, such as chicken manure, soil from caves, and bird and bat guano, as well as in 62% of samples of organic fertilizer that underwent the composting process. We demonstrated that 100-KDa real-time PCR is a useful tool for environmental surveillance that can be used to identify the potential reservoirs of H. capsulatum and to prevent outbreaks, especially in people with the higher risk of exposure, such as spelunkers, farmers, poultry manure collectors, and anyone who handle organic fertilizers or bat and bird excreta. |
Effects of individual differences, society, and culture on youth-rated problems and strengths in 38 societies
Ivanova MY , Achenbach TM , Turner L , Almqvist F , Begovac I , Bilenberg N , Bird H , Broberg AG , Córdova Calderón MA , Chahed M , Dang HM , Dobrean A , Döpfner M , Erol N , Forns M , Guðmundsson HS , Hannesdóttir H , Hewitt-Ramirez N , Kanbayashi Y , Karki S , Koot HM , Lambert MC , Leung P , Magai DN , Maggiolini A , Metzke CW , Minaei A , Monzani da Rocha M , Moreira PAS , Mulatu MS , Nøvik TS , Oh KJ , Petot D , Petot JM , Pisa C , Pomalima R , Roussos A , Rudan V , Sawyer MG , Shahini M , Simsek Z , Steinhausen HC , Verhulst FC , Weintraub S , Weiss B , Wolanczyk T , Zhang EY , Zilber N , Žukauskienė R . J Child Psychol Psychiatry 2022 63 (11) 1297-1307 BACKGROUND: Clinicians increasingly serve youths from societal/cultural backgrounds different from their own. This raises questions about how to interpret what such youths report. Rescorla et al. (2019, European Child & Adolescent Psychiatry, 28, 1107) found that much more variance in 72,493 parents' ratings of their offspring's mental health problems was accounted for by individual differences than by societal or cultural differences. Although parents' reports are essential for clinical assessment of their offspring, they reflect parents' perceptions of the offspring. Consequently, clinical assessment also requires self-reports from the offspring themselves. To test effects of individual differences, society, and culture on youths' self-ratings of their problems and strengths, we analyzed Youth Self-Report (YSR) scores for 39,849 11-17 year olds in 38 societies. METHODS: Indigenous researchers obtained YSR self-ratings from population samples of youths in 38 societies representing 10 culture cluster identified in the Global Leadership and Organizational Behavioral Effectiveness study. Hierarchical linear modeling of scores on 17 problem scales and one strengths scale estimated the percent of variance accounted for by individual differences (including measurement error), society, and culture cluster. ANOVAs tested age and gender effects. RESULTS: Averaged across the 17 problem scales, individual differences accounted for 92.5% of variance, societal differences 6.0%, and cultural differences 1.5%. For strengths, individual differences accounted for 83.4% of variance, societal differences 10.1%, and cultural differences 6.5%. Age and gender had very small effects. CONCLUSIONS: Like parents' ratings, youths' self-ratings of problems were affected much more by individual differences than societal/cultural differences. Most variance in self-rated strengths also reflected individual differences, but societal/cultural effects were larger than for problems, suggesting greater influence of social desirability. The clinical significance of individual differences in youths' self-reports should thus not be minimized by societal/cultural differences, which-while important-can be taken into account with appropriate norms, as can gender and age differences. |
Immunobiology of Crimean-Congo hemorrhagic fever
Rodriguez SE , Hawman DW , Sorvillo TE , O'Neal TJ , Bird BH , Rodriguez LL , Bergeron É , Nichol ST , Montgomery JM , Spiropoulou CF , Spengler JR . Antiviral Res 2022 199 105244 Human infection with Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne pathogen in the family Nairoviridae, can result in a spectrum of outcomes, ranging from asymptomatic infection through mild clinical signs to severe or fatal disease. Studies of CCHFV immunobiology have investigated the relationship between innate and adaptive immune responses with disease severity, attempting to elucidate factors associated with differential outcomes. In this article, we begin by highlighting unanswered questions, then review current efforts to answer them. We discuss in detail current clinical studies and research in laboratory animals on CCHF, including immune targets of infection and adaptive and innate immune responses. We summarize data about the role of the immune response in natural infections of animals and humans and experimental studies in vitro and in vivo and from evaluating immune-based therapies and vaccines, and present recommendations for future research. |
First human infection of avian influenza A(H5N6) virus reported in Lao People's Democratic Republic, February-March 2021
Sengkeopraseuth B , Co KC , Leuangvilay P , Mott JA , Khomgsamphanh B , Somoulay V , Tsuyuoka R , Chiew M , Ketmayoon P , Jones J , Pusch E , Jang Y , Barnes J , Davis CT , Phommachanh P , Khamphaphongphane B , Olsen SJ , Xangsayyarath P . Influenza Other Respir Viruses 2021 16 (2) 181-185 In March 2021, Lao People's Democratic Republic (Laos) reported an avian influenza A(H5N6) virus infection in a 5-year-old child identified through sentinel surveillance. This was the first human A(H5N6) infection reported outside of China. A multidisciplinary investigation undertook contact tracing and enhanced human and animal surveillance in surrounding villages and live bird markets. Seven Muscovy ducks tested positive for highly pathogenic avian influenza A(H5N6) viruses. Sequenced viruses belonged to clade 2.3.4.4h and were closely related to viruses detected in poultry in Vietnam and to previous viruses detected in Laos. Surveillance and coordinated outbreak response remain essential to global health security. |
Use of Cervid Serosurveys to Monitor Eastern Equine Encephalitis Virus Activity in Northern New England, United States, 2009-2017
Mutebi JP , Mathewson AA , Elias SP , Robinson S , Graham AC , Casey P , Lubelczyk CB . J Med Entomol 2021 59 (1) 49-55 Vertebrate surveillance for eastern equine encephalitis virus (EEEV) activity usually focuses on three types of vertebrates: horses, passerine birds, and sentinel chicken flocks. However, there is a variety of wild vertebrates that are exposed to EEEV infections and can be used to track EEEV activity. In 2009, we initiated a pilot study in northern New England, United States, to evaluate the effectiveness of using wild cervids (free-ranging white-tailed deer and moose) as spatial sentinels for EEEV activity. In Maine, New Hampshire, and Vermont during 2009-2017, we collected blood samples from hunter-harvested cervids at tagging stations and obtained harvest location information from hunters. U.S. Centers for Disease Control and Prevention processed the samples for EEEV antibodies using plaque reduction neutralization tests (PRNTs). We detected EEEV antibodies in 6 to 17% of cervid samples in the different states and mapped cervid EEEV seropositivity in northern New England. EEEV antibody-positive cervids were the first detections of EEEV activity in the state of Vermont, in northern Maine, and northern New Hampshire. Our key result was the detection of the antibodies in areas far outside the extent of documented wild bird, mosquito, human case, or veterinary case reports of EEEV activity in Maine, New Hampshire, and Vermont. These findings showed that cervid (deer and moose) serosurveys can be used to characterize the geographic extent of EEEV activity, especially in areas with low EEEV activity or with little or no EEEV surveillance. Cervid EEEV serosurveys can be a useful tool for mapping EEEV activity in areas of North America in addition to northern New England. |
Use of mosquitoes to indirectly assess West Nile virus activity among colonial waterbirds
Felix TA , Young G , Panella NA , Burkhalter KL , Komar N . Waterbirds 2021 43 314-320 West Nile virus activity was evaluated within an island waterbird nesting colony with > 1,250 birds at Riverside Reservoir, Weld County, Colorado, USA. To avoid disturbance of nesting birds, blood-engorged mosquitoes (Culex tarsalis) were used to sample blood indirectly from birds rather than capturing, sampling, and releasing live birds. Local virus activity was confirmed by West Nile virus-positive feather samples from 26% of 46 carcasses collected during monthly visits to the colony from June to September 2009, including American White Pelican (Pelecanus erythrorhynchos; n = 7), California Gull (Larus californicus; n = 1), Snowy Egret (Egretta thula; n = 2), and Cattle Egret (Bubulcus ibis; n = 2). Of 22 blood-engorged mosquitoes collected and the blood meal host identified to species, one West Nile virus infection was detected (putatively from a Snowy Egret), and West Nile virus-specific antibodies were detected in eight samples: Snowy Egret (n = 5), Great Blue Heron (Ardea herodias; n = 2), and American White Pelican (n = 1). The engorgement rate of female Culex tarsalis at the nesting colony was 34%, sixfold higher than that at a nearby mainland site of 5.3%. The utilization of mosquitoes for sampling blood from wild animals may have broader application, and potentially reduce human disturbance of sensitive nesting bird species. © 2021 The Waterbird Society. All rights reserved. |
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Kuhn JH , Adkins S , Agwanda BR , Al Kubrusli R , Alkhovsky Aльxoвcкий Cepгeй Bлaдимиpoвич SV , Amarasinghe GK , Avšič-Županc T , Ayllón MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Basler CF , Bavari S , Beer M , Bejerman N , Bennett AJ , Bente DA , Bergeron É , Bird BH , Blair CD , Blasdell KR , Blystad DR , Bojko J , Borth WB , Bradfute S , Breyta R , Briese T , Brown PA , Brown JK , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Büttner C , Calisher CH , Cao 曹孟籍 M , Casas I , Chandran K , Charrel RN , Cheng Q , Chiaki 千秋祐也 Y , Chiapello M , Choi IR , Ciuffo M , Clegg JCS , Crozier I , Dal Bó E , de la Torre JC , de Lamballerie X , de Swart RL , Debat H , Dheilly NM , Di Cicco E , Di Paola N , Di Serio F , Dietzgen RG , Digiaro M , Dolnik O , Drebot MA , Drexler JF , Dundon WG , Duprex WP , Dürrwald R , Dye JM , Easton AJ , Ebihara 海老原秀喜 H , Elbeaino T , Ergünay K , Ferguson HW , Fooks AR , Forgia M , Formenty PBH , Fránová J , Freitas-Astúa J , Fu 付晶晶 J , Fürl S , Gago-Zachert S , Gāo 高福 GF , García ML , García-Sastre A , Garrison AR , Gaskin T , Gonzalez JJ , Griffiths A , Goldberg TL , Groschup MH , Günther S , Hall RA , Hammond J , Han 韩彤 T , Hepojoki J , Hewson R , Hong 洪健 J , Hong 洪霓 N , Hongo 本郷誠治 S , Horie 堀江真行 M , Hu JS , Hu T , Hughes HR , Hüttner F , Hyndman TH , Ilyas M , Jalkanen R , Jiāng 姜道宏 D , Jonson GB , Junglen S , Kadono 上遠野冨士夫 F , Kaukinen KH , Kawate M , Klempa B , Klingström J , Kobinger G , Koloniuk I , Kondō 近藤秀樹 H , Koonin EV , Krupovic M , Kubota 久保田健嗣 K , Kurath G , Laenen L , Lambert AJ , Langevin SL , Lee B , Lefkowitz EJ , Leroy EM , Li 李邵蓉 S , Li 李龙辉 L , Lǐ 李建荣 J , Liu 刘华珍 H , Lukashevich IS , Maes P , de Souza WM , Marklewitz M , Marshall SH , Marzano SL , Massart S , McCauley JW , Melzer M , Mielke-Ehret N , Miller KM , Ming TJ , Mirazimi A , Mordecai GJ , Mühlbach HP , Mühlberger E , Naidu R , Natsuaki 夏秋知英 T , Navarro JA , Netesov Heтёcoв Cepгeй Bиктopoвич SV , Neumann G , Nowotny N , Nunes MRT , Olmedo-Velarde A , Palacios G , Pallás V , Pályi B , Papa Άννα Παπά A , Paraskevopoulou Σοφία Παρασκευοπούλου S , Park AC , Parrish CR , Patterson DA , Pauvolid-Corrêa A , Pawęska JT , Payne S , Peracchio C , Pérez DR , Postler TS , Qi 亓立莹 L , Radoshitzky SR , Resende RO , Reyes CA , Rima BK , Luna GR , Romanowski V , Rota P , Rubbenstroth D , Rubino L , Runstadler JA , Sabanadzovic S , Sall AA , Salvato MS , Sang R , Sasaya 笹谷孝英 T , Schulze AD , Schwemmle M , Shi 施莽 M , Shí 石晓宏 X , Shí 石正丽 Z , Shimomoto 下元祥史 Y , Shirako Y , Siddell SG , Simmonds P , Sironi M , Smagghe G , Smither S , Song 송진원 JW , Spann K , Spengler JR , Stenglein MD , Stone DM , Sugano J , Suttle CA , Tabata A , Takada 高田礼人 A , Takeuchi 竹内繁治 S , Tchouassi DP , Teffer A , Tesh RB , Thornburg NJ , Tomitaka 冨高保弘 Y , Tomonaga 朝長啓造 K , Tordo N , Torto B , Towner JS , Tsuda 津田新哉 S , Tu 涂长春 C , Turina M , Tzanetakis IE , Uchida J , Usugi 宇杉富雄 T , Vaira AM , Vallino M , van den Hoogen B , Varsani A , Vasilakis Νίκος Βασιλάκης N , Verbeek M , von Bargen S , Wada 和田治郎 J , Wahl V , Walker PJ , Wang 王林发 LF , Wang 王国平 G , Wang 王雁翔 Y , Wang 王亚琴 Y , Waqas M , Wèi 魏太云 T , Wen 温少华 S , Whitfield AE , Williams JV , Wolf YI , Wu 吴建祥 J , Xu 徐雷 L , Yanagisawa 栁澤広宣 H , Yang 杨彩霞 C , Yang 杨作坤 Z , Zerbini FM , Zhai 翟立峰 L , Zhang 张永振 YZ , Zhang 张松 S , Zhang 张靖国 J , Zhang 张哲 Z , Zhou 周雪平 X . Arch Virol 2021 166 (12) 3513-3566 In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
Revising conventional wisdom about histoplasmosis in the United States
Benedict K , Toda M , Jackson BR . Open Forum Infect Dis 2021 8 (7) ofab306 Studies performed during the 1940s-1960s continue to serve as the foundation of the epidemiology of histoplasmosis given that many knowledge gaps persist regarding its geographic distribution, prevalence, and burden in the United States. We explore 3 long-standing, frequently cited, and somewhat incomplete epidemiologic beliefs about histoplasmosis: (1) histoplasmosis is the most common endemic mycosis in the United States, (2) histoplasmosis is endemic to the Ohio and Mississippi River Valleys, and (3) histoplasmosis is associated with bird or bat droppings. We also summarize recent insights about the clinical spectrum of histoplasmosis and changes in underlying conditions associated with the severe forms. Continuing to identify prevention opportunities will require better epidemiologic data, better diagnostic testing, and greater awareness about this neglected disease among health care providers, public health professionals, and the general public. © 2021 Published by Oxford University Press on behalf of Infectious Diseases Society of America 2021. |
Crossroads of highly pathogenic H5N1: overlap between wild and domestic birds in the Black Sea-Mediterranean impacts global transmission.
Hill NJ , Smith LM , Muzaffar SB , Nagel JL , Prosser DJ , Sullivan JD , Spragens KA , Demattos CA , Demattos CC , El Sayed L , Erciyas-Yavuz K , Davis CT , Jones J , Kis Z , Donis RO , Newman SA , Takekawa JY . Virus Evol 2021 7 (1) veaa093 Understanding transmission dynamics that link wild and domestic animals is a key element of predicting the emergence of infectious disease, an event that has highest likelihood of occurring wherever human livelihoods depend on agriculture and animal trade. Contact between poultry and wild birds is a key driver of the emergence of highly pathogenic avian influenza (HPAI), a process that allows for host switching and accelerated reassortment, diversification, and spread of virus between otherwise unconnected regions. This study addresses questions relevant to the spillover of HPAI at a transmission hotspot: what is the nature of the wild bird-poultry interface in Egypt and adjacent Black Sea-Mediterranean countries and how has this contributed to outbreaks occurring worldwide? Using a spatiotemporal model of infection risk informed by satellite tracking of waterfowl and viral phylogenetics, this study identified ecological conditions that contribute to spillover in this understudied region. Results indicated that multiple ducks (Northern Shoveler and Northern Pintail) hosted segments that shared ancestry with HPAI H5 from both clade 2.2.1 and clade 2.3.4 supporting the role of Anseriformes in linking viral populations in East Asia and Africa over large distances. Quantifying the overlap between wild ducks and H5N1-infected poultry revealed an increasing interface in late winter peaking in early spring when ducks expanded their range before migration, with key differences in the timing of poultry contact risk between local and long-distance migrants. Copyright © 2020 Published by Oxford University Press 2020. This work is written by a US Government employee and is in the public domain in the US. |
Occupational Histoplasmosis: Epidemiology and Prevention Measures
de Perio MA , Benedict K , Williams SL , Niemeier-Walsh C , Green BJ , Coffey C , Di Giuseppe M , Toda M , Park JH , Bailey RL , Nett RJ . J Fungi (Basel) 2021 7 (7) In areas where Histoplasma is endemic in the environment, occupations involving activities exposing workers to soil that contains bird or bat droppings may pose a risk for histoplasmosis. Occupational exposures are frequently implicated in histoplasmosis outbreaks. In this paper, we review the literature on occupationally acquired histoplasmosis. We describe the epidemiology, occupational risk factors, and prevention measures according to the hierarchy of controls. |
Lake Michigan insights from island studies: the roles of chipmunks and coyotes in maintaining Ixodes scapularis and Borrelia burgdorferi in the absence of white-tailed deer
Sidge JL , Foster ES , Buttke DE , Hojgaard A , Graham CB , Tsao JI . Ticks Tick Borne Dis 2021 12 (5) 101761 Deer management (e.g., reduction) has been proposed as a tool to reduce the acarological risk of Lyme disease. There have been few opportunities to investigate Ixodes scapularis (blacklegged tick) and Borrelia burgdorferi sensu stricto dynamics in the absence of white-tailed deer (Odocoileus virginianus) in midwestern North America. A pair of islands in Lake Michigan presented a unique opportunity to study the role of alternative hosts for the adult stage of the blacklegged tick for maintaining a tick population as a deer herd exists on North Manitou Island but not on South Manitou Island, where coyotes (Canis latrans) and hares (Lepus americanus) are the dominant medium mammals. Additionally, we were able to investigate the maintenance of I. scapularis and B. burgdorferi in small mammal communities on both islands, which were dominated by eastern chipmunks (Tamias striatus). From 2011 to 2015, we surveyed both islands for blacklegged ticks by drag cloth sampling, bird mist netting, and small and medium-sized mammal trapping. We assayed questing ticks, on-host ticks, and mammal biopsies for the Lyme disease pathogen, B. burgdorferi. We detected all three life stages of the blacklegged tick on both islands. Of the medium mammals sampled, no snowshoe hares (Lepus americanus, 0/23) were parasitized by adult blacklegged ticks, but 2/2 coyotes (Canis latrans) sampled on South Manitou Island in 2014 were parasitized by adult blacklegged ticks, suggesting that coyotes played a role in maintaining the tick population in the absence of deer. We also detected I. scapularis ticks on passerine birds from both islands, providing support that birds contribute to maintaining as well as introducing blacklegged ticks and B. burgdorferi to the islands. We observed higher questing adult and nymphal tick densities, and higher B. burgdorferi infection prevalence in small mammals and in adult ticks on the island with deer as compared to the deer-free island. On the islands, we also found that 25% more chipmunks were tick-infested than mice, fed more larvae and nymphs relative to their proportional abundance compared to mice, and thus may play a larger role compared to mice in the maintenance of B. burgdorferi. Our investigation demonstrated that alternative hosts could maintain a local population of blacklegged ticks and an enzootic cycle of the Lyme disease bacterium in the absence of white-tailed deer. Thus, alternative adult blacklegged tick hosts should be considered when investigating deer-targeted management tools for reducing tick-borne disease risk, especially when the alternative host community may be abundant and diverse. |
Aerosol agitation: Quantifying the hydrodynamic stressors on particulates encapsulated in small droplets
McRae O , Mead KR , Bird JC . Phys Rev Fluids 2021 6 (3) Lower respiratory tract infections originate from multiple aerosol sources, varying from droplets erupting from bursting bubbles in a toilet or those produced by human speech. A key component of the aerosol-based infection pathway-from source to potential host-is the survival of the pathogen during aerosolization. Due to their finite-time instability, pinch-off processes occurring during aerosolization have the potential to rapidly accelerate the fluid into focused regions of these droplets, stress objects therein, and if powerful enough, disrupt biological life. However, the extent that a pathogen will be exposed to damaging hydrodynamic stressors during the aerosolization process is unknown. Here we compute the probability that particulates will be exposed to a hydrodynamic stressor during the generation of droplets that range in size from one to 100 microns. For example, particulates in water droplets less than 5 μm have a 50% chance of being subjected to an energy dissipation rate in excess of 1011 W/m3, hydrodynamic stresses in excess of 104 Pa, and strain rates in excess of 107 s-1, values known to damage certain biological cells. Using a combination of numerical simulations and self-similar dynamics, we show how the exposure within a droplet can be generally predicted from its size, surface tension, and density, even across different aerosolization mechanisms. Collectively, these results introduce aerosol agitation as a potential factor in pathogen transmission and implicate the pinch-off singularity flow as setting the distribution of hydrodynamic stressors experienced within the droplet. © 2021 American Physical Society. |
Japanese quail (Coturnix japonica) as a novel model to study the relationship between the avian microbiome and microbial endocrinology-based host-microbe interactions
Lyte JM , Keane J , Eckenberger J , Anthony N , Shrestha S , Marasini D , Daniels KM , Caputi V , Donoghue AM , Lyte M . Microbiome 2021 9 (1) 38 BACKGROUND: Microbial endocrinology, which is the study of neuroendocrine-based interkingdom signaling, provides a causal mechanistic framework for understanding the bi-directional crosstalk between the host and microbiome, especially as regards the effect of stress on health and disease. The importance of the cecal microbiome in avian health is well-recognized, yet little is understood regarding the mechanisms underpinning the avian host-microbiome relationship. Neuroendocrine plasticity of avian tissues that are focal points of host-microbiome interaction, such as the gut and lung, has likewise received limited attention. Avian in vivo models that enable the study of the neuroendocrine dynamic between host and microbiome are needed. As such, we utilized Japanese quail (Coturnix japonica) that diverge in corticosterone response to stress to examine the relationship between stress-related neurochemical concentrations at sites of host-microbe interaction, such as the gut, and the cecal microbiome. RESULTS: Our results demonstrate that birds which contrast in corticosterone response to stress show profound separation in cecal microbial community structure as well as exhibit differences in tissue neurochemical concentrations and structural morphologies of the gut. Changes in neurochemicals known to be affected by the microbiome were also identified in tissues outside of the gut, suggesting a potential relationship in birds between the cecal microbiome and overall avian physiology. CONCLUSIONS: The present study provides the first evidence that the structure of the avian cecal microbial community is shaped by selection pressure on the bird for neuroendocrine response to stress. Identification of unique region-dependent neurochemical changes in the intestinal tract following stress highlights environmental stressors as potential drivers of microbial endocrinology-based mechanisms of avian host-microbiome dialogue. Together, these results demonstrate that tissue neurochemical concentrations in the avian gut may be related to the cecal microbiome and reveal the Japanese quail as a novel avian model in which to further examine the mechanisms underpinning these relationships. Video abstract. |
Equine-like H3 avian influenza viruses in wild birds, Chile
Bravo-Vasquez N , Yao J , Jimenez-Bluhm P , Meliopoulos V , Freiden P , Sharp B , Estrada L , Davis A , Cherry S , Livingston B , Danner A , Schultz-Cherry S , Hamilton-West C . Emerg Infect Dis 2020 26 (12) 2887-2898 Since their discovery in the United States in 1963, outbreaks of infection with equine influenza virus (H3N8) have been associated with serious respiratory disease in horses worldwide. Genomic analysis suggests that equine H3 viruses are of an avian lineage, likely originating in wild birds. Equine-like internal genes have been identified in avian influenza viruses isolated from wild birds in the Southern Cone of South America. However, an equine-like H3 hemagglutinin has not been identified. We isolated 6 distinct H3 viruses from wild birds in Chile that have hemagglutinin, nucleoprotein, nonstructural protein 1, and polymerase acidic genes with high nucleotide homology to the 1963 H3N8 equine influenza virus lineage. Despite the nucleotide similarity, viruses from Chile were antigenically more closely related to avian viruses and transmitted effectively in chickens, suggesting adaptation to the avian host. These studies provide the initial demonstration that equine-like H3 hemagglutinin continues to circulate in a wild bird reservoir. |
SARS-CoV-2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination.
Huang WC , Zhou S , He X , Chiem K , Mabrouk MT , Nissly RH , Bird IM , Strauss M , Sambhara S , Ortega J , Wohlfert EA , Martinez-Sobrido L , Kuchipudi SV , Davidson BA , Lovell JF . Adv Mater 2020 32 (50) e2005637 The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a candidate vaccine antigen that binds angiotensin-converting enzyme 2 (ACE2), leading to virus entry. Here, it is shown that rapid conversion of recombinant RBD into particulate form via admixing with liposomes containing cobalt-porphyrin-phospholipid (CoPoP) potently enhances the functional antibody response. Antigen binding via His-tag insertion into the CoPoP bilayer results in a serum-stable and conformationally intact display of the RBD on the liposome surface. Compared to other vaccine formulations, immunization using CoPoP liposomes admixed with recombinant RBD induces multiple orders of magnitude higher levels of antibody titers in mice that neutralize pseudovirus cell entry, block RBD interaction with ACE2, and inhibit live virus replication. Enhanced immunogenicity can be accounted for by greater RBD uptake into antigen-presenting cells in particulate form and improved immune cell infiltration in draining lymph nodes. QS-21 inclusion in the liposomes results in an enhanced antigen-specific polyfunctional T cell response. In mice, high dose immunization results in minimal local reactogenicity, is well-tolerated, and does not elevate serum cobalt levels. Taken together, these results confirm that particulate presentation strategies for the RBD immunogen should be considered for inducing strongly neutralizing antibody responses against SARS-CoV-2. |
Cross-protection by inactivated H5 pre-pandemic vaccine seed strains against diverse Goose/Guangdong lineage H5N1 highly pathogenic avian influenza viruses.
Criado MF , Sá ESilva M , Lee DH , de Lima Salge CA , Spackman E , Donis R , Wan XF , Swayne DE . J Virol 2020 94 (24) The highly pathogenic avian influenza virus (HPAIV) H5N1 A/goose/Guangdong/1996 lineage (Gs/GD) is endemic in poultry across several countries in the world, and has caused lethal, sporadic infections in humans. Vaccines are important in HPAI control for both poultry and in pre-pandemic preparedness in humans. This study assessed inactivated pre-pandemic vaccine strains in a One Health framework, focusing on the genetic and antigenic diversity of field H5N1 Gs/GD viruses from the agricultural sector and assessing cross protection in a chicken challenge model. Nearly half (47.92%) of the forty-eight combinations of vaccine/challenge viruses examined had bird protection of 80% or above. Most vaccinated groups had prolonged mean death time (MDT) and the virus shedding titers were significantly lower compared to the sham group (p≤ 0.05). The antibody titers in the pre-challenge sera were not predictive of protection. Although vaccinated birds had higher titers of hemagglutination inhibiting (HI) antibodies against homologous vaccine antigen, most of them also had lower or no antibody titer against the challenge antigen. The comparison of all parameters, homologous or closely related vaccine and challenge viruses, gave the best prediction protection. Through additional analysis, we identified a pattern of epitopes substitutions in the hemagglutinin (HA) of each challenge virus that impacted protection, regardless of the vaccine used. These changes were situated in the antigenic sites and/or reported epitopes associated with virus escape from antibody neutralization. As a result, this study highlights virus diversity, immune response complexity, and the importance of strain selection for vaccine development to control H5N1 HPAIV in the agricultural sector and for human pre-pandemic preparedness. We suggest that the engineering of specific antigenic sites can improve the immunogenicity of H5 vaccines.ImportanceThe sustained circulation of highly pathogenic avian influenza virus (HPAIV) H5N1 A/goose/Guangdong/1996 lineage (Gs/GD) in the agricultural sector and some wild birds has led to the evolution and selection of distinct viral lineages involved in the escape from vaccine protection. Our results using inactivated vaccine candidates from the human pandemic preparedness program in a chicken challenge model identified critical antigenic conformational epitopes on the H5 hemagglutinin (HA) from different clades that were associated with antibody recognition and escape. Even though other investigators have reported epitope mapping in the H5 HA, much of this information pertains to epitopes reactive towards mouse antibodies. Our findings validate changes in antigenic epitopes of HA associated with virus escape from antibody neutralization in chickens, which has direct relevance to field protection and virus evolution. Therefore, the knowledge of these immunodominant regions is essential to proactively develop diagnostic tests, improve surveillance platforms to monitor AIV outbreaks, and design more efficient and broad-spectrum agricultural and human prepandemic vaccines. |
2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Kuhn JH , Adkins S , Alioto D , Alkhovsky SV , Amarasinghe GK , Anthony SJ , Avšič-Županc T , Ayllón MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Bartonička T , Basler C , Bavari S , Beer M , Bente DA , Bergeron É , Bird BH , Blair C , Blasdell KR , Bradfute SB , Breyta R , Briese T , Brown PA , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Buzkan N , Calisher CH , Cao M , Casas I , Chamberlain J , Chandran K , Charrel RN , Chen B , Chiumenti M , Choi IR , Clegg JCS , Crozier I , da Graça JV , Dal Bó E , Dávila AMR , de la Torre JC , de Lamballerie X , de Swart RL , Di Bello PL , Di Paola N , Di Serio F , Dietzgen RG , Digiaro M , Dolja VV , Dolnik O , Drebot MA , Drexler JF , Dürrwald R , Dufkova L , Dundon WG , Duprex WP , Dye JM , Easton AJ , Ebihara H , Elbeaino T , Ergünay K , Fernandes J , Fooks AR , Formenty PBH , Forth LF , Fouchier RAM , Freitas-Astúa J , Gago-Zachert S , Gāo GF , García ML , García-Sastre A , Garrison AR , Gbakima A , Goldstein T , Gonzalez JJ , Griffiths A , Groschup MH , Günther S , Guterres A , Hall RA , Hammond J , Hassan M , Hepojoki J , Hepojoki S , Hetzel U , Hewson R , Hoffmann B , Hongo S , Höper D , Horie M , Hughes HR , Hyndman TH , Jambai A , Jardim R , Jiāng D , Jin Q , Jonson GB , Junglen S , Karadağ S , Keller KE , Klempa B , Klingström J , Kobinger G , Kondō H , Koonin EV , Krupovic M , Kurath G , Kuzmin IV , Laenen L , Lamb RA , Lambert AJ , Langevin SL , Lee B , Lemos ERS , Leroy EM , Li D , Lǐ J , Liang M , Liú W , Liú Y , Lukashevich IS , Maes P , Marciel de Souza W , Marklewitz M , Marshall SH , Martelli GP , Martin RR , Marzano SL , Massart S , McCauley JW , Mielke-Ehret N , Minafra A , Minutolo M , Mirazimi A , Mühlbach HP , Mühlberger E , Naidu R , Natsuaki T , Navarro B , Navarro JA , Netesov SV , Neumann G , Nowotny N , Nunes MRT , Nylund A , Økland AL , Oliveira RC , Palacios G , Pallas V , Pályi B , Papa A , Parrish CR , Pauvolid-Corrêa A , Pawęska JT , Payne S , Pérez DR , Pfaff F , Radoshitzky SR , Rahman AU , Ramos-González PL , Resende RO , Reyes CA , Rima BK , Romanowski V , Robles Luna G , Rota P , Rubbenstroth D , Runstadler JA , Ruzek D , Sabanadzovic S , Salát J , Sall AA , Salvato MS , Sarpkaya K , Sasaya T , Schwemmle M , Shabbir MZ , Shí X , Shí Z , Shirako Y , Simmonds P , Širmarová J , Sironi M , Smither S , Smura T , Song JW , Spann KM , Spengler JR , Stenglein MD , Stone DM , Straková P , Takada A , Tesh RB , Thornburg NJ , Tomonaga K , Tordo N , Towner JS , Turina M , Tzanetakis I , Ulrich RG , Vaira AM , van den Hoogen B , Varsani A , Vasilakis N , Verbeek M , Wahl V , Walker PJ , Wang H , Wang J , Wang X , Wang LF , Wèi T , Wells H , Whitfield AE , Williams JV , Wolf YI , Wú Z , Yang X , Yáng X , Yu X , Yutin N , Zerbini FM , Zhang T , Zhang YZ , Zhou G , Zhou X . Arch Virol 2020 165 (12) 3023-3072 In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure