Last data update: Jan 27, 2025. (Total: 48650 publications since 2009)
Records 1-14 (of 14 Records) |
Query Trace: Biedron C[original query] |
---|
Risk-Factors for Exposure Associated With SARS-CoV-2 Detection After Recent Known or Potential COVID-19 Exposures Among Patients Seeking Medical Care at a Large Urban, Public Hospital in Fulton County, Georgia - A Cross-Sectional Investigation.
Smith-Jeffcoat SE , Sleweon S , Koh M , Khalil GM , Schechter MC , Rebolledo PA , Kasinathan V , Hoffman A , Rossetti R , Shragai T , O'Laughlin K , Espinosa CC , Bankamp B , Bowen MD , Paulick A , Gargis AS , Folster JM , da Silva J , Biedron C , Stewart RJ , Wang YF , Kirking HL , Tate JE . Front Public Health 2022 10 809356 We aimed to describe frequency of COVID-19 exposure risk factors among patients presenting for medical care at an urban, public hospital serving mostly uninsured/Medicare/Medicaid clients and risk factors associated with SARS-CoV-2 infection. Consenting, adult patients seeking care at a public hospital from August to November 2020 were enrolled in this cross-sectional investigation. Saliva, anterior nasal and nasopharyngeal swabs were collected and tested for SARS-CoV-2 using RT-PCR. Participant demographics, close contact, and activities ≤14 days prior to enrollment were collected through interview. Logistic regression was used to identify risk factors associated with testing positive for SARS-CoV-2. Among 1,078 participants, 51.8% were male, 57.0% were aged ≥50 years, 81.3% were non-Hispanic Black, and 7.6% had positive SARS-CoV-2 tests. Only 2.7% reported COVID-19 close contact ≤14 days before enrollment; this group had 6.79 adjusted odds of testing positive (95%CI = 2.78-16.62) than those without a reported exposure. Among participants who did not report COVID-19 close contact, working in proximity to ≥10 people (adjusted OR = 2.17; 95%CI = 1.03-4.55), choir practice (adjusted OR = 11.85; 95%CI = 1.44-97.91), traveling on a plane (adjusted OR = 5.78; 95%CI = 1.70-19.68), and not participating in an essential indoor activity (i.e., grocery shopping, public transit use, or visiting a healthcare facility; adjusted OR = 2.15; 95%CI = 1.07-4.30) were associated with increased odds of testing positive. Among this population of mostly Black, non-Hispanic participants seeking care at a public hospital, we found several activities associated with testing positive for SARS-CoV-2 infection in addition to close contact with a case. Understanding high-risk activities for SARS-CoV-2 infection among different communities is important for issuing awareness and prevention strategies. |
Specimen self-collection for SARS-CoV-2 testing: Patient performance and preferences-Atlanta, Georgia, August-October 2020.
O'Laughlin K , Espinosa CC , Smith-Jeffcoat SE , Koh M , Khalil GM , Hoffman A , Rebolledo PA , Schechter MC , Stewart RJ , da Silva J , Biedron C , Bankamp B , Folster J , Gargis AS , Bowen MD , Paulick A , Wang YF , Tate JE , Kirking HL . PLoS One 2022 17 (3) e0264085 Self-collected specimens can expand access to SARS-CoV-2 testing. At a large inner-city hospital 1,082 participants self-collected saliva and anterior nasal swab (ANS) samples before healthcare workers collected nasopharyngeal swab (NPS) samples on the same day. To characterize patient preferences for self-collection, this investigation explored ability, comfort, and ease of ANS and saliva self-collection for SARS-CoV-2 testing along with associated patient characteristics, including medical history and symptoms of COVID-19. With nearly all participants successfully submitting a specimen, favorable ratings from most participants (at least >79% in ease and comfort), and equivocal preference between saliva and ANS, self-collection is a viable SARS-CoV-2 testing option. |
Descriptive Evaluation of Antibody Responses to SARS-CoV-2 Infection in Plasma and Gingival Crevicular Fluid in a Nursing Home Cohort-Arkansas, June-August 2020.
Brown NE , Lyons AK , Schuh AJ , Stumpf MM , Harcourt JL , Tamin A , Rasheed MAU , Mills L , Lester SN , Thornburg NJ , Nguyen K , Costantini V , Vinjé J , Huang JY , Gilbert SE , Gable P , Bollinger S , Sabour S , Beshearse E , Surie D , Biedron C , Gregory CJ , Clemmons NS , Whitaker B , Coughlin MM , Seely KA , Garner K , Gulley T , Haney T , Kothari A , Patil N , Halpin AL , McDonald LC , Kutty PK , Brown AC . Infect Control Hosp Epidemiol 2021 43 (11) 1-24 OBJECTIVE: Characterize and compare SARS-CoV-2-specific immune responses in plasma and gingival crevicular fluid (GCF) from nursing home residents during and after natural infection. DESIGN: Prospective cohort. SETTING: Nursing home. PARTICIPANTS: SARS-CoV-2-infected nursing home residents. METHODS: A convenience sample of 14 SARS-CoV-2-infected nursing home residents, enrolled 4-13 days after real-time reverse transcription polymerase chain reaction diagnosis, were followed for 42 days. Post diagnosis, plasma SARS-CoV-2-specific pan-Immunoglobulin (Ig), IgG, IgA, IgM, and neutralizing antibodies were measured at 5 timepoints and GCF SARS-CoV-2-specific IgG and IgA were measured at 4 timepoints. RESULTS: All participants demonstrated immune responses to SARS-CoV-2 infection. Among 12 phlebotomized participants, plasma was positive for pan-Ig and IgG in all 12, neutralizing antibodies in 11, IgM in 10, and IgA in 9. Among 14 participants with GCF specimens, GCF was positive for IgG in 13 and IgA in 12. Immunoglobulin responses in plasma and GCF had similar kinetics; median times to peak antibody response was similar across specimen types (4 weeks for IgG; 3 weeks for IgA). Participants with pan-Ig, IgG, and IgA detected in plasma and GCF IgG remained positive through this evaluation's end 46-55 days post-diagnosis. All participants were viral culture negative by the first detection of antibodies. CONCLUSIONS: Nursing home residents had detectable SARS-CoV-2 antibodies in plasma and GCF after infection. Kinetics of antibodies detected in GCF mirrored those from plasma. Non-invasive GCF may be useful for detecting and monitoring immunologic responses in populations unable or unwilling to be phlebotomized. |
Absence of SARS-CoV-2 infections among patients with end-stage renal disease following facility-wide testing in four outpatient hemodialysis facilities.
Wilson WW , Bardossy AC , Gable P , Herzig C , Beshearse E , Gualandi N , Sabour S , Brown N , Brown AC , Kutty P , Tobin-D'Angelo M , Lea JP , Apata IW , Novosad S , Hudson M , Hernandez-Romieu AC , Tobolowsky F , Lyons A , Gilbert S , Soda E , Biedron C , Korhonen L . Am J Infect Control 2021 49 (10) 1318-1321 Facility-wide testing performed at four outpatient hemodialysis facilities in the absence of an outbreak or escalating community incidence did not identify new SARS-CoV-2 infections and illustrated key logistical considerations essential to successful implementation of SARS-CoV-2 screening. Facilities could consider prioritizing facility-wide SARS-CoV-2 testing during suspicion of an outbreak in the facility or escalating community spread without robust infection control strategies in place. Being prepared to address operational considerations will enhance implementation of facility-wide testing in the outpatient dialysis setting. |
Effects of Patient Characteristics on Diagnostic Performance of Self-Collected Samples for SARS-CoV-2 Testing.
Smith-Jeffcoat SE , Koh M , Hoffman A , Rebolledo PA , Schechter MC , Miller HK , Sleweon S , Rossetti R , Kasinathan V , Shragai T , O'Laughlin K , Espinosa CC , Khalil GM , Adeyemo AO , Moorman A , Bauman BL , Joseph K , O'Hegarty M , Kamal N , Atallah H , Moore BL , Bohannon CD , Bankamp B , Hartloge C , Bowen MD , Paulick A , Gargis AS , Elkins C , Stewart RJ , da Silva J , Biedron C , Tate JE , Wang YF , Kirking HL . Emerg Infect Dis 2021 27 (8) 2081-2089 We evaluated the performance of self-collected anterior nasal swab (ANS) and saliva samples compared with healthcare worker-collected nasopharyngeal swab specimens used to test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used the same PCR diagnostic panel to test all self-collected and healthcare worker-collected samples from participants at a public hospital in Atlanta, Georgia, USA. Among 1,076 participants, 51.9% were men, 57.1% were >50 years of age, 81.2% were Black (non-Hispanic), and 74.9% reported >1 chronic medical condition. In total, 8.0% tested positive for SARS-CoV-2. Compared with nasopharyngeal swab samples, ANS samples had a sensitivity of 59% and saliva samples a sensitivity of 68%. Among participants tested 3-7 days after symptom onset, ANS samples had a sensitivity of 80% and saliva samples a sensitivity of 85%. Sensitivity varied by specimen type and patient characteristics. These findings can help physicians interpret PCR results for SARS-CoV-2. |
Epidemiologic, immunologic, and virus characteristics in patients with paired SARS-CoV-2 serology and reverse transcription polymerase chain reaction testing.
Shragai T , Smith-Jeffcoat SE , Koh M , Schechter MC , Rebolledo PA , Kasinathan V , Wang Y , Hoffman A , Miller H , Tejada-Strop A , Jain S , Tamin A , Harcourt JL , Thornburg NJ , Wong P , Medrzycki M , Folster JM , Semenova V , Steward-Clark E , Drobenuic J , Biedron C , Stewart RJ , da Silva J , Kirking HL , Tate JE . J Infect Dis 2021 225 (2) 229-237 ![]() BACKGROUND: The natural history and clinical progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can be better understood using combined serological and reverse transcription polymerase chain reaction (RT-PCR) testing. METHODS: Nasopharyngeal swabs and serum were collected at a single time-point from patients at an urban, public hospital August - November 2020 and tested for SARS-CoV-2 using RT-PCR, viral culture, and anti-Spike pan-Ig antibody testing. Participant demographics and symptoms were collected through interview. Chi-squared and Fisher's exact tests were used to identify associations between RT-PCR and serology results with presence of viable virus and frequency of symptoms. RESULTS: Among 592 participants, 129 (21.8%) had evidence of SARS-CoV-2 infection by RT-PCR or serology. Presence of SARS-CoV-2 antibodies was strongly associated with lack of viable virus (p-value=0.016). COVID-19 symptom frequency was similar for patients testing RT-PCR positive/seronegative and patients testing RT-PCR positive/seropositive. Patients testing RT-PCR positive/seronegative reported headaches, fatigue, diarrhea and vomiting at rates not statistically significantly different from those testing RT-PCR negative/seropositive. CONCLUSIONS: While patients testing SARS-CoV-2 seropositive were unlikely to test positive for viable virus and were therefore low-risk for forward transmission, COVID-19 symptoms were common. Paired SARS-CoV-2 RT-PCR and antibody testing provides more nuanced understanding of patients' COVID-19 status. |
Molecular epidemiology of carbapenem-resistant Enterobacterales in Thailand, 2016-2018.
Paveenkittiporn W , Lyman M , Biedron C , Chea N , Bunthi C , Kolwaite A , Janejai N . Antimicrob Resist Infect Control 2021 10 (1) 88 ![]() BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) is a global threat. Enterobacterales develops carbapenem resistance through several mechanisms, including the production of carbapenemases. We aim to describe the prevalence of Carbapenem-resistant Enterobacterales (CRE) with and without carbapenemase production and distribution of carbapenemase-producing (CP) genes in Thailand using 2016-2018 data from a national antimicrobial resistance surveillance system developed by the Thailand National Institute of Health (NIH). METHODS: CRE was defined as any Enterobacterales resistant to ertapenem, imipenem, or meropenem. Starting in 2016, 25 tertiary care hospitals from the five regions of Thailand submitted the first CRE isolate from each specimen type and patient admission to Thailand NIH, accompanied by a case report form with patient information. NIH performed confirmatory identification and antimicrobial susceptibility testing and performed multiplex polymerase chain reaction testing to detect CP-genes. Using 2016-2018 data, we calculated proportions of CP-CRE, stratified by specimen type, organism, and CP-gene using SAS 9.4. RESULTS: Overall, 4,296 presumed CRE isolates were submitted to Thailand NIH; 3,946 (93%) were confirmed CRE. Urine (n = 1622, 41%) and sputum (n = 1380, 35%) were the most common specimen types, while blood only accounted for 323 (8%) CRE isolates. The most common organism was Klebsiella pneumoniae (n = 2660, 72%), followed by Escherichia coli (n = 799, 22%). The proportion of CP-CRE was high for all organism types (range: 85-98%). Of all CRE isolates, 2909 (80%) had one CP-gene and 629 (17%) had > 1 CP-gene. New Delhi metallo-beta-lactamase (NDM) was the most common CP-gene, present in 2392 (65%) CRE isolates. K. pneumoniae carbapenemase (KPC) and Verona integron-encoded metallo-β-lactamase (VIM) genes were not detected among any isolates. CONCLUSION: CP genes were found in a high proportion (97%) of CRE isolates from hospitals across Thailand. The prevalence of NDM and OXA-48-like genes in Thailand is consistent with pattern seen in Southeast Asia, but different from that in the United States and other regions. As carbapenemase testing is not routinely performed in Thailand, hospital staff should consider treating all patients with CRE with enhanced infection control measures; in line with CDC recommendation for enhanced infection control measures for CP-CRE because of their high propensity to spread. |
A Comparison of Less Invasive SARS-CoV-2 Diagnostic Specimens in Nursing Home Residents - Arkansas, June-August 2020.
Gable P , Huang JY , Gilbert SE , Bollinger S , Lyons AK , Sabour S , Surie D , Biedron C , Haney T , Beshearse E , Gregory CJ , Seely KA , Clemmons NS , Patil N , Kothari A , Gulley T , Garner K , Anderson K , Thornburg NJ , Halpin AL , McDonald LC , Kutty PK , Brown AC . Clin Infect Dis 2021 73 S58-S64 ![]() ![]() BACKGROUND: SARS-CoV-2 testing remains essential for early identification and clinical management of cases. We compared the diagnostic performance of three specimen types for characterizing SARS-CoV-2 in infected nursing home residents. METHODS: A convenience sample of 17 residents were enrolled within 15 days of first positive SARS-CoV-2 result by real-time reverse transcription polymerase chain reaction (RT-PCR) and prospectively followed for 42 days. Anterior nasal swabs (AN), oropharyngeal swabs (OP), and saliva specimens (SA) were collected on the day of enrollment, every 3 days for the first 21 days, then weekly for 21 days. Specimens were tested for presence of SARS-CoV-2 RNA using RT-PCR and replication-competent virus by viral culture. RESULTS: Comparing the three specimen types collected from each participant at each time point, the concordance of paired RT-PCR results ranged from 80-88%. After the first positive result, SA and OP were RT-PCR-positive for ≤48 days; AN were RT-PCR-positive for ≤33 days. AN had the highest percentage of RT-PCR-positive results (81%; 21/26) when collected ≤10 days of participants' first positive result. Eleven specimens were positive by viral culture: nine AN collected ≤19 days following first positive result and two OP collected ≤5 days following first positive result. CONCLUSIONS: AN, OP, and SA were effective methods for repeated testing in this population. More AN than OP were positive by viral culture. SA and OP remained RT-PCR-positive longer than AN, which could lead to unnecessary interventions if RT-PCR detection occurred after viral shedding has likely ceased. |
Infectious Period of Severe Acute Respiratory Syndrome Coronavirus 2 in 17 Nursing Home Residents-Arkansas, June-August 2020.
Surie D , Huang JY , Brown AC , Gable P , Biedron C , Gilbert SE , Garner K , Bollinger S , Gulley T , Haney T , Lyons AK , Beshearse E , Gregory CJ , Sabour S , Clemmons NS , James AE , Tamin A , Reese N , Perry-Dow KA , Brown R , Harcourt JL , Campbell D , Houston H , Chakravorty R , Paulick A , Whitaker B , Murdoch J , Spicer L , Stumpf MM , Mills L , Coughlin MM , Higdem P , Rasheed MAU , Lonsway D , Bhatnagar A , Kothari A , Anderson K , Thornburg NJ , Breaker E , Adamczyk M , McAllister GA , Halpin AL , Seely KA , Patil N , McDonald LC , Kutty PK . Open Forum Infect Dis 2021 8 (3) ofab048 BACKGROUND: To estimate the infectious period of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adults with underlying conditions, we assessed duration of coronavirus disease 2019 (COVID-19) symptoms, reverse-transcription polymerase chain reaction (RT-PCR) positivity, and culture positivity among nursing home residents. METHODS: We enrolled residents within 15 days of their first positive SARS-CoV-2 test (diagnosis) at an Arkansas facility from July 7 to 15, 2020 and instead them for 42 days. Every 3 days for 21 days and then weekly, we assessed COVID-19 symptoms, collected specimens (oropharyngeal, anterior nares, and saliva), and reviewed medical charts. Blood for serology was collected on days 0, 6, 12, 21, and 42. Infectivity was defined by positive culture. Duration of culture positivity was compared with duration of COVID-19 symptoms and RT-PCR positivity. Data were summarized using measures of central tendency, frequencies, and proportions. RESULTS: We enrolled 17 of 39 (44%) eligible residents. Median participant age was 82 years (range, 58-97 years). All had ≥3 underlying conditions. Median duration of RT-PCR positivity was 22 days (interquartile range [IQR], 8-31 days) from diagnosis; median duration of symptoms was 42 days (IQR, 28-49 days). Of 9 (53%) participants with any culture-positive specimens, 1 (11%) severely immunocompromised participant remained culture-positive 19 days from diagnosis; 8 of 9 (89%) were culture-positive ≤8 days from diagnosis. Seroconversion occurred in 12 of 12 (100%) surviving participants with ≥1 blood specimen; all participants were culture-negative before seroconversion. CONCLUSIONS: Duration of infectivity was considerably shorter than duration of symptoms and RT-PCR positivity. Severe immunocompromise may prolong SARS-CoV-2 infectivity. Seroconversion indicated noninfectivity in this cohort. |
Facility-Wide Testing for SARS-CoV-2 in Nursing Homes - Seven U.S. Jurisdictions, March-June 2020.
Hatfield KM , Reddy SC , Forsberg K , Korhonen L , Garner K , Gulley T , James A , Patil N , Bezold C , Rehman N , Sievers M , Schram B , Miller TK , Howell M , Youngblood C , Ruegner H , Radcliffe R , Nakashima A , Torre M , Donohue K , Meddaugh P , Staskus M , Attell B , Biedron C , Boersma P , Epstein L , Hughes D , Lyman M , Preston LE , Sanchez GV , Tanwar S , Thompson ND , Vallabhaneni S , Vasquez A , Jernigan JA . MMWR Morb Mortal Wkly Rep 2020 69 (32) 1095-1099 Undetected infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) contributes to transmission in nursing homes, settings where large outbreaks with high resident mortality have occurred (1,2). Facility-wide testing of residents and health care personnel (HCP) can identify asymptomatic and presymptomatic infections and facilitate infection prevention and control interventions (3-5). Seven state or local health departments conducted initial facility-wide testing of residents and staff members in 288 nursing homes during March 24-June 14, 2020. Two of the seven health departments conducted testing in 195 nursing homes as part of facility-wide testing all nursing homes in their state, which were in low-incidence areas (i.e., the median preceding 14-day cumulative incidence in the surrounding county for each jurisdiction was 19 and 38 cases per 100,000 persons); 125 of the 195 nursing homes had not reported any COVID-19 cases before the testing. Ninety-five of 22,977 (0.4%) persons tested in 29 (23%) of these 125 facilities had positive SARS-CoV-2 test results. The other five health departments targeted facility-wide testing to 93 nursing homes, where 13,443 persons were tested, and 1,619 (12%) had positive SARS-CoV-2 test results. In regression analyses among 88 of these nursing homes with a documented case before facility-wide testing occurred, each additional day between identification of the first case and completion of facility-wide testing was associated with identification of 1.3 additional cases. Among 62 facilities that could differentiate results by resident and HCP status, an estimated 1.3 HCP cases were identified for every three resident cases. Performing facility-wide testing immediately after identification of a case commonly identifies additional unrecognized cases and, therefore, might maximize the benefits of infection prevention and control interventions. In contrast, facility-wide testing in low-incidence areas without a case has a lower proportion of test positivity; strategies are needed to further optimize testing in these settings. |
Initial and Repeated Point Prevalence Surveys to Inform SARS-CoV-2 Infection Prevention in 26 Skilled Nursing Facilities - Detroit, Michigan, March-May 2020.
Sanchez GV , Biedron C , Fink LR , Hatfield KM , Polistico JMF , Meyer MP , Noe RS , Copen CE , Lyons AK , Gonzalez G , Kiama K , Lebednick M , Czander BK , Agbonze A , Surma AR , Sandhu A , Mika VH , Prentiss T , Zervos J , Dalal DA , Vasquez AM , Reddy SC , Jernigan J , Kilgore PE , Zervos MJ , Chopra T , Bezold CP , Rehman NK . MMWR Morb Mortal Wkly Rep 2020 69 (27) 882-886 Skilled nursing facilities (SNFs) are focal points of the coronavirus disease 2019 (COVID-19) pandemic, and asymptomatic infections with SARS-CoV-2, the virus that causes COVID-19, among SNF residents and health care personnel have been described (1-3). Repeated point prevalence surveys (serial testing of all residents and health care personnel at a health care facility irrespective of symptoms) have been used to identify asymptomatic infections and have reduced SARS-CoV-2 transmission during SNF outbreaks (1,3). During March 2020, the Detroit Health Department and area hospitals detected a sharp increase in COVID-19 diagnoses, hospitalizations, and associated deaths among SNF residents. The Detroit Health Department collaborated with local government, academic, and health care system partners and a CDC field team to rapidly expand SARS-CoV-2 testing and implement infection prevention and control (IPC) activities in all Detroit-area SNFs. During March 7-May 8, among 2,773 residents of 26 Detroit SNFs, 1,207 laboratory-confirmed cases of COVID-19 were identified during three periods: before (March 7-April 7) and after two point prevalence surveys (April 8-25 and April 30-May 8): the overall attack rate was 44%. Within 21 days of receiving their first positive test results, 446 (37%) of 1,207 COVID-19 patients were hospitalized, and 287 (24%) died. Among facilities participating in both surveys (n = 12), the percentage of positive test results declined from 35% to 18%. Repeated point prevalence surveys in SNFs identified asymptomatic COVID-19 cases, informed cohorting and IPC practices aimed at reducing transmission, and guided prioritization of health department resources for facilities experiencing high levels of SARS-CoV-2 transmission. With the increased availability of SARS-CoV-2 testing, repeated point prevalence surveys and enhanced and expanded IPC support should be standard tools for interrupting and preventing COVID-19 outbreaks in SNFs. |
Evaluation of infection prevention and control readiness at frontline health care facilities in high-risk districts bordering Ebola virus disease-affected areas in the Democratic Republic of the Congo - Uganda, 2018
Biedron C , Lyman M , Stuckey MJ , Homsy J , Lamorde M , Luvsansharav UO , Wilson K , Gomes D , Omuut W , Okware S , Semanda JN , Kiggundu R , Bulwadda D , Brown V , Nelson LJ , Driwale A , Fagan R , Park BJ , Smith RM . MMWR Morb Mortal Wkly Rep 2019 68 (39) 851-854 Infection prevention and control (IPC) in health care facilities is essential to protecting patients, visitors, and health care personnel from the spread of infectious diseases, including Ebola virus disease (Ebola). Patients with suspected Ebola are typically referred to specialized Ebola treatment units (ETUs), which have strict isolation and IPC protocols, for testing and treatment (1,2). However, in settings where contact tracing is inadequate, Ebola patients might first seek care at general health care facilities, which often have insufficient IPC capacity (3-6). Before 2014-2016, most Ebola outbreaks occurred in rural or nonurban communities, and the role of health care facilities as amplification points, while recognized, was limited (7,8). In contrast to these earlier outbreaks, the 2014-2016 West Africa Ebola outbreak occurred in densely populated urban areas where access to health care facilities was better, but contact tracing was generally inadequate (8). Patients with unrecognized Ebola who sought care at health care facilities with inadequate IPC initiated multiple chains of transmission, which amplified the epidemic to an extent not seen in previous Ebola outbreaks (3-5,7). Implementation of robust IPC practices in general health care facilities was critical to ending health care-associated transmission (8). In August 2018, when an Ebola outbreak was recognized in the Democratic Republic of the Congo (DRC), neighboring countries began preparing for possible introduction of Ebola, with a focus on IPC. Baseline IPC assessments conducted in frontline health care facilities in high-risk districts in Uganda found IPC gaps in screening, isolation, and notification. Based on findings, additional funds were provided for IPC, a training curriculum was developed, and other corrective actions were taken. Ebola preparedness efforts should include activities to ensure that frontline health care facilities have the IPC capacity to rapidly identify suspected Ebola cases and refer such patients for treatment to protect patients, staff members, and visitors. |
2009 pandemic influenza A (H1N1) virus outbreak and response - Rwanda, October, 2009-May, 2010
Wane J , Nyatanyi T , Nkunda R , Rukelibuga J , Ahmed Z , Biedron C , Kabeja A , Muhimpundu MA , Kabanda A , Antara S , Briet O , Koama JB , Rusanganwa A , Mukabayire O , Karema C , Raghunathan P , Lowrance D . PLoS One 2012 7 (6) e31572 BACKGROUND: In October 2009, the first case of pandemic influenza A(H1N1)pdm09 (pH1N1) was confirmed in Kigali, Rwanda and countrywide dissemination occurred within several weeks. We describe clinical and epidemiological characteristics of this epidemic. METHODS: From October 2009 through May 2010, we undertook epidemiologic investigations and response to pH1N1. Respiratory specimens were collected from all patients meeting the WHO case definition for pH1N1, which were tested using CDC's real time RT-PCR protocol at the Rwandan National Reference Laboratory (NRL). Following documented viral transmission in the community, testing focused on clinically severe and high-risk group suspect cases. RESULTS: From October 9, 2009 through May 31, 2010, NRL tested 2,045 specimens. In total, 26% (n = 532) of specimens tested influenza positive; of these 96% (n = 510) were influenza A and 4% (n = 22) were influenza B. Of cases testing influenza A positive, 96.8% (n = 494), 3% (n = 15), and 0.2% (n = 1) were A(H1N1)pdm09, Seasonal A(H3) and Seasonal A(non-subtyped), respectively. Among laboratory-confirmed cases, 263 (53.2%) were children <15 years and 275 (52%) were female. In total, 58 (12%) cases were hospitalized with mean duration of hospitalization of 5 days (Range: 2-15 days). All cases recovered and there were no deaths. Overall, 339 (68%) confirmed cases received oseltamivir in any setting. Among all positive cases, 26.9% (143/532) were among groups known to be at high risk of influenza-associated complications, including age <5 years 23% (122/532), asthma 0.8% (4/532), cardiac disease 1.5% (8/532), pregnancy 0.6% (3/532), diabetes mellitus 0.4% (2/532), and chronic malnutrition 0.8% (4/532). CONCLUSIONS: Rwanda experienced a PH1N1 outbreak which was epidemiologically similar to PH1N1 outbreaks in the region. Unlike seasonal influenza, children <15 years were the most affected by pH1N1. Lessons learned from the outbreak response included the need to strengthen integrated disease surveillance, develop laboratory contingency plans, and evaluate the influenza sentinel surveillance system. |
An assessment of Lot Quality Assurance Sampling to evaluate malaria outcome indicators: extending malaria indicator surveys
Biedron C , Pagano M , Hedt BL , Kilian A , Ratcliffe A , Mabunda S , Valadez JJ . Int J Epidemiol 2010 39 (1) 72-9 BACKGROUND: Large investments and increased global prioritization of malaria prevention and treatment have resulted in greater emphasis on programme monitoring and evaluation (M&E) in many countries. Many countries currently use large multistage cluster sample surveys to monitor malaria outcome indicators on a regional and national level. However, these surveys often mask local-level variability important to programme management. Lot Quality Assurance Sampling (LQAS) has played a valuable role for local-level programme M&E. If incorporated into these larger surveys, it would provide a comprehensive M&E plan at little, if any, extra cost. METHODS: The Mozambique Ministry of Health conducted a Malaria Indicator Survey (MIS) in June and July 2007. We applied LQAS classification rules to the 345 sampled enumeration areas to demonstrate identifying high- and low-performing areas with respect to two malaria program indicators-'household possession of any bednet' and 'household possession of any insecticide-treated bednet (ITN)'. RESULTS: As shown by the MIS, no province in Mozambique achieved the 70% coverage target for household possession of bednets or ITNs. By applying LQAS classification rules to the data, we identify 266 of the 345 enumeration areas as having bednet coverage severely below the 70% target. An additional 73 were identified with low ITN coverage. CONCLUSIONS: This article demonstrates the feasibility of integrating LQAS into multistage cluster sampling surveys and using these results to support a comprehensive national, regional and local programme M&E system. Furthermore, in the recommendations we outlined how to integrate the Large Country-LQAS design into macro-surveys while still obtaining results available through current sampling practices. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 27, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure