Last data update: Nov 22, 2024. (Total: 48197 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Biddle JE[original query] |
---|
Influenza virus shedding and symptoms: Dynamics and implications from a multiseason household transmission study
Morris SE , Nguyen HQ , Grijalva CG , Hanson KE , Zhu Y , Biddle JE , Meece JK , Halasa NB , Chappell JD , Mellis AM , Reed C , Biggerstaff M , Belongia EA , Talbot HK , Rolfes MA . PNAS Nexus 2024 3 (9) pgae338 Isolation of symptomatic infectious persons can reduce influenza transmission. However, virus shedding that occurs without symptoms will be unaffected by such measures. Identifying effective isolation strategies for influenza requires understanding the interplay between individual virus shedding and symptom presentation. From 2017 to 2020, we conducted a case-ascertained household transmission study using influenza real-time RT-qPCR testing of nasal swabs and daily symptom diary reporting for up to 7 days after enrolment (≤14 days after index onset). We assumed real-time RT-qPCR cycle threshold (Ct) values were indicators of quantitative virus shedding and used symptom diaries to create a score that tracked influenza-like illness (ILI) symptoms (fever, cough, or sore throat). We fit phenomenological nonlinear mixed-effects models stratified by age and vaccination status and estimated two quantities influencing isolation effectiveness: shedding before symptom onset and shedding that might occur once isolation ends. We considered different isolation end points (including 24 h after fever resolution or 5 days after symptom onset) and assumptions about the infectiousness of Ct shedding trajectories. Of the 116 household contacts with ≥2 positive tests for longitudinal analyses, 105 (91%) experienced ≥1 ILI symptom. On average, children <5 years experienced greater peak shedding, longer durations of shedding, and elevated ILI symptom scores compared with other age groups. Most individuals (63/105) shed <10% of their total shed virus before symptom onset, and shedding after isolation varied substantially across individuals, isolation end points, and infectiousness assumptions. Our results can inform strategies to reduce transmission from symptomatic individuals infected with influenza. |
Asymptomatic and mildly symptomatic influenza virus infections by season -- Case-ascertained household transmission studies, United States, 2017-2023
Biddle JE , Nguyen HQ , Talbot HK , Rolfes MA , Biggerstaff M , Johnson S , Reed C , Belongia EA , Grijalva CG , Mellis AM . medRxiv 2024 Asymptomatic influenza virus infection occurs but may vary by factors such as age, influenza vaccination status, or influenza season. We examined the frequency of influenza virus infection and associated symptoms using data from two case-ascertained household transmission studies (conducted from 2017-2023) with prospective, systematic collection of respiratory specimens and symptoms. From the 426 influenza virus infected household contacts that met our inclusion criteria, 8% were asymptomatic, 6% had non-respiratory symptoms, 23% had acute respiratory symptoms, and 62% had influenza-like illness symptoms. Understanding the prevalence of asymptomatic and mildly symptomatic influenza cases is important for implementing effective influenza prevention strategies and enhancing the effectiveness of symptom-based surveillance systems. |
Symptoms, viral loads, and rebound among COVID-19 outpatients treated with nirmatrelvir/ritonavir compared to propensity score matched untreated individuals
Smith-Jeffcoat SE , Biddle JE , Talbot HK , Morrissey KG , Stockwell MS , Maldonado Y , McLean HQ , Ellingson KD , Bowman NM , Asturias E , Mellis AM , Johnson S , Kirking HL , Rolfes MAR , Olivo V , Merrill L , Battan-Wraith S , Sano E , McLaren SH , Vargas CY , Goodman S , Sarnquist CC , Govindaranjan P , Petrie JG , Belongia EA , Ledezma K , Pryor K , Lutrick K , Bullock A , Yang A , Haehnel Q , Rao S , Zhu Y , Schmitz J , Hart K , Grijalva CG , Salvatore PP . Clin Infect Dis 2024 78 (5) 1175-1184 BACKGROUND: Nirmatrelvir/ritonavir (N/R) reduces severe outcomes from coronavirus disease 2019 (COVID-19); however, rebound after treatment has been reported. We compared symptom and viral dynamics in individuals with COVID-19 who completed N/R treatment and similar untreated individuals. METHODS: We identified symptomatic participants who tested severe acute respiratory syndrome coronavirus 2-positive and were N/R eligible from a COVID-19 household transmission study. Index cases from ambulatory settings and their households contacts were enrolled. We collected daily symptoms, medication use, and respiratory specimens for quantitative polymerase chain reaction for 10 days during March 2022-May 2023. Participants who completed N/R treatment (treated) were propensity score matched to untreated participants. We compared symptom rebound, viral load (VL) rebound, average daily symptoms, and average daily VL by treatment status measured after N/R treatment completion or 7 days after symptom onset if untreated. RESULTS: Treated (n = 130) and untreated participants (n = 241) had similar baseline characteristics. After treatment completion, treated participants had greater occurrence of symptom rebound (32% vs 20%; P = .009) and VL rebound (27% vs 7%; P < .001). Average daily symptoms were lower among treated participants without symptom rebound (1.0 vs 1.6; P < .01) but not statistically lower with symptom rebound (3.0 vs 3.4; P = .5). Treated participants had lower average daily VLs without VL rebound (0.9 vs 2.6; P < .01) but not statistically lower with VL rebound (4.8 vs 5.1; P = .7). CONCLUSIONS: Individuals who completed N/R treatment experienced fewer symptoms and lower VL but rebound occured more often compared with untreated individuals. Providers should prescribe N/R, when indicated, and communicate rebound risk to patients. |
Changes in Transmission and Symptoms of SARS-CoV-2 in United States Households, April 2020-September 2022 (preprint)
Mellis AM , Lauring AS , Talbot HK , McLean HQ , Morrissey KG , Stockwell MS , Bowman NM , Maldonado Y , Ellingson KD , Rao S , Biddle JE , Johnson S , Ogokeh C , Salvatore PP , Reed C , Smith-Jeffcoat SE , Meece JK , Hanson KE , Belongia EA , Bendall EE , Gilbert J , Olivo V , Merrill LS , McLaren SH , Sano E , Vargas CY , Saiman L , Silverio Francisco RA , Bullock A , Lin J , Govindarajan P , Goodman SH , Sarnquist CC , Lutrick K , Ledezma KI , Ramadan FA , Pryor K , Miiro FN , Asturias E , Dominguez S , Olson D , Izurieta HS , Chappell J , Lindsell C , Halasa N , Hart K , Zhu Y , Schmitz J , Rolfes MA , Grijalva CG . medRxiv 2023 19 Background: The natural history of SARS-CoV-2 infection and transmission dynamics may have changed as SARS-CoV-2 has evolved and population immunity has shifted. Method(s): Household contacts, enrolled from two multi-site case-ascertained household transmission studies (April 2020-April 2021 and September 2021-September 2022), were followed for 10-14 days after enrollment with daily collection of nasal swabs and/or saliva for SARS-CoV-2 testing and symptom diaries. SARS-CoV-2 virus lineage was determined by whole genome sequencing, with multiple imputation where sequences could not be recovered. Adjusted infection risks were estimated using modified Poisson regression. Finding(s): 858 primary cases with 1473 household contacts were examined. Among unvaccinated household contacts, the infection risk adjusted for presence of prior infection and age was 58% (95% confidence interval [CI]: 49-68%) in households currently exposed to pre-Delta lineages and 90% (95% CI: 74-100%) among those exposed to Omicron BA.5 (detected May - September 2022). The fraction of infected household contacts reporting any symptom was similarly high between pre-Delta (86%, 95% CI: 81-91%) and Omicron lineages (77%, 70-85%). Among Omicron BA.5-infected contacts, 48% (41-56%) reported fever, 63% (56-71%) cough, 22% (17-28%) shortness of breath, and 20% (15-27%) loss of/change in taste/smell. Interpretation(s): The risk of infection among household contacts exposed to SARS-CoV-2 is high and increasing with more recent SARS-CoV-2 lineages. This high infection risk highlights the importance of vaccination to prevent severe disease. Funding(s): Funded by the Centers for Disease Control and Prevention and the Food and Drug Administration. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 22, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure