Last data update: Aug 15, 2025. (Total: 49733 publications since 2009)
| Records 1-2 (of 2 Records) |
| Query Trace: Bickson J[original query] |
|---|
| Development of an experimental technique to determine the barrier performance of medical gloves when stretched
Soo JC , Portnoff L , Bickson J , Fisher EM . Ann Work Expo Health 2024 Protective clothing standards, such as test methods published by ASTM International, play an integral role in ensuring the performance of personal protective equipment. The standard tests are not without limitations and are periodically reviewed and often updated. Some tests may not be reflective of in-use conditions. A new test cell was designed using sanitary fixtures to evaluate the effect of glove stretch on barrier performance using fluorescein solution as the challenge agent for enhanced visualization and fluorometer detection. Domed-shaped and flat screens were developed to permit and limit glove stretch within the test cell. The barrier performance of glove swatches was evaluated for both stretched and unstretched states. Latex, nitrile, and vinyl glove models of various thicknesses were evaluated. The tests were conducted following pressure and time parameters specified in ASTM F903, ASTM F1670, and ASTM F1671. Fluorescein solution movement, which may occur through penetration, was measured using a fluorometer. Glove stretch caused a reduction in glove thickness ranging from 16% to 40%. Overall, 21 sample failures were found (16.7%; n = 126) regardless of test condition. Nitrile gloves provided better barrier efficacy with the lowest failure rates (2.38%; 1 failure out of 42) compared to latex (19.4%; 7 failures out of 36) and vinyl gloves (27.1%; 13 failures out of 48). Differences in failure rates between stretched and unstretched gloves were insignificant; however, the latex material showed a 2.5 times increase in failures when stretched compared to unstretched. The new test apparatus was able to differentiate between the barrier performance of different glove materials. The use of a domed screen allowed the gloves to stretch, a condition that better represents the state of gloves when in use. Analysis of samples collected from the glove surface opposite to the exposure may provide a way to assess chemical permeation in addition to penetration. |
| Cryogenic air supply for cooling built-in-place refuge alternatives in hot mine
Yan L , Yantek D , Reyes M , Whisner B , Bickson J , Srednicki J , Damiano N , Bauer E . Min Metall Explor 2020 37 (3) 861-871 Built-in-place (BIP) refuge alternatives (RAs) are designed to provide a secure space for miners who cannot escape during a mine emergency. Heat and humidity buildup within RAs may expose miners to physiological hazards such as heat stress. To minimize the risk of heat stress, Title 30 Code of Federal Regulations (CFR), or 30 CFR, mandates a maximum allowable apparent temperature (AT) for an occupied RA of 35 °C (95 °F) (MSHA 2008 [1]). The National Institute for Occupational Safety and Health (NIOSH) has conducted extensive research on the thermal environment of occupied RAs intended for use in underground coal mines. NIOSH research has demonstrated that a fully occupied BIP RA can exceed the AT limit by > 5.6 °C (10 °F) in mines with elevated mine strata and air temperatures (Bissert et al. 2017 [2]). In this circumstance, an RA cooling system could provide a solution. This paper provides an overview of test methodology and findings as well as guidance on improving the performance of a cryogenic air system prototype by optimizing the flow rate, increasing the tank storage capacity, and improving the efficiency of the heat exchanger of the cryogenic system. This may enable BIP RAs to meet the 35 °C (95 °F) AT limit in mines with elevated temperatures. The information in this paper is useful for RA manufacturers and mines that may choose to implement a cryogenic air system as a heat mitigation strategy. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Aug 15, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure


