Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-12 (of 12 Records) |
Query Trace: Bhatnagar Julu[original query] |
---|
Intersecting Paths of Emerging and Reemerging Infectious Diseases.
Wilson TM , Paddock CD , Reagan-Steiner S , Bhatnagar J , Martines RB , Wiens AL , Madsen M , Komatsu KK , Venkat H , Zaki SR . Emerg Infect Dis 2021 27 (5) 1517-1519 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shares common clinicopathologic features with other severe pulmonary illnesses. Hantavirus pulmonary syndrome was diagnosed in 2 patients in Arizona, USA, suspected of dying from infection with SARS-CoV-2. Differential diagnoses and possible co-infections should be considered for cases of respiratory distress during the SARS-CoV-2 pandemic. |
Introduction, Transmission Dynamics, and Fate of Early SARS-CoV-2 Lineages in Santa Clara County, California.
Villarino E , Deng X , Kemper CA , Jorden MA , Bonin B , Rudman SL , Han GS , Yu G , Wang C , Federman S , Bushnell B , Wadford DA , Lin W , Tao Y , Paden CR , Bhatnagar J , MacCannell T , Tong S , Batson J , Chiu CY . J Infect Dis 2021 224 (2) 207-217 ![]() ![]() We combined viral genome sequencing with contact tracing to investigate introduction and evolution of SARS-CoV-2 lineages in Santa Clara County, California from January 27 to March 21, 2020. Of 558 persons with COVID-19, 101 genomes from 143 available clinical samples comprised 17 different lineages including SCC1 (n=41), WA1 (n=9, including the first 2 reported deaths in the United States, diagnosed post-mortem), D614G (n=4), ancestral Wuhan Hu-1 (n=21), and 13 others (n=26). Public health intervention may have curtailed the persistence of lineages that appeared transiently during February-March. By August, only D614G lineages introduced after March 21 were circulating in SCC. |
Evidence of SARS-CoV-2 Replication and Tropism in the Lungs, Airways and Vascular Endothelium of Patients with Fatal COVID-19: An Autopsy Case-Series.
Bhatnagar J , Gary J , Reagan-Steiner S , Estetter LB , Tong S , Tao Y , Denison AM , Lee E , DeLeon-Carnes M , Li Y , Uehara A , Paden CR , Leitgeb B , Uyeki TM , Martines RB , Ritter JM , Paddock CD , Shieh WJ , Zaki SR . J Infect Dis 2021 223 (5) 752-764 ![]() ![]() BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to produce substantial morbidity and mortality. To understand the reasons for the wide-spectrum complications and severe outcomes of COVID-19, we aimed to identify cellular targets of SARS-CoV-2 tropism and replication in various tissues. METHODS: We evaluated RNA extracted from formalin-fixed, paraffin-embedded autopsy tissues from 64 case-patients (age range: 1 month to 84 years; COVID-19 confirmed n=21, suspected n=43) by SARS-CoV-2 RT-PCR. For cellular localization of SARS-CoV-2 RNA and viral characterization, we performed in-situ hybridization (ISH), subgenomic RNA RT-PCR, and whole genome sequencing. RESULTS: SARS-CoV-2 was identified by RT-PCR in 32 case-patients (confirmed n=21 and suspected n=11). ISH was positive in 20 and subgenomic RNA RT-PCR was positive in 17 of 32 RT-PCR-positive case-patients. SARS-CoV-2 RNA was localized by ISH in hyaline membranes, pneumocytes and macrophages of lungs, epithelial cells of airways, and in endothelial cells and vessels wall of brain stem, leptomeninges, lung, heart, liver, kidney, and pancreas. D614G variant was detected in 9 RT-PCR-positive case-patients. CONCLUSIONS: We identified cellular targets of SARS-CoV-2 tropism and replication in the lungs and airways and demonstrated its direct infection in vascular endothelium. This work provides important insights into COVID-19 pathogenesis and mechanisms of severe outcomes. |
Pathology and Pathogenesis of SARS-CoV-2 Associated with Fatal Coronavirus Disease, United States.
Martines RB , Ritter JM , Matkovic E , Gary J , Bollweg BC , Bullock H , Goldsmith CS , Silva-Flannery L , Seixas JN , Reagan-Steiner S , Uyeki T , Denison A , Bhatnagar J , Shieh WJ , Zaki SR , Covid-Pathology Working Group . Emerg Infect Dis 2020 26 (9) 2005-2015 An ongoing pandemic of coronavirus disease (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Characterization of the histopathology and cellular localization of SARS-CoV-2 in the tissues of patients with fatal COVID-19 is critical to further understand its pathogenesis and transmission and for public health prevention measures. We report clinicopathologic, immunohistochemical, and electron microscopic findings in tissues from 8 fatal laboratory-confirmed cases of SARS-CoV-2 infection in the United States. All cases except 1 were in residents of long-term care facilities. In these patients, SARS-CoV-2 infected epithelium of the upper and lower airways with diffuse alveolar damage as the predominant pulmonary pathology. SARS-CoV-2 was detectable by immunohistochemistry and electron microscopy in conducting airways, pneumocytes, alveolar macrophages, and a hilar lymph node but was not identified in other extrapulmonary tissues. Respiratory viral co-infections were identified in 3 cases; 3 cases had evidence of bacterial co-infection. |
Evidence for Limited Early Spread of COVID-19 Within the United States, January-February 2020.
CDC COVID-19 Response Team , Jorden MA , Rudman SL , Villarino E , Hoferka S , Patel MT , Bemis K , Simmons CR , Jespersen M , Iberg Johnson J , Mytty E , Arends KD , Henderson JJ , Mathes RW , Weng CX , Duchin J , Lenahan J , Close N , Bedford T , Boeckh M , Chu HY , Englund JA , Famulare M , Nickerson DA , Rieder MJ , Shendure J , Starita LM , Armstrong Gregory L , Butler Jay C , Coletta Michael A , Kite-Powell Aaron , Bhatnagar Julu , Reagan-Steiner Sarah , Tong Suxiang , Flannery Brendan , Ferdinands Jill M , Chung Jessie R . MMWR Morb Mortal Wkly Rep 2020 69 (22) 680-684 ![]() From January 21 through February 23, 2020, public health agencies detected 14 U.S. cases of coronavirus disease 2019 (COVID-19), all related to travel from China (1,2). The first nontravel-related U.S. case was confirmed on February 26 in a California resident who had become ill on February 13 (3). Two days later, on February 28, a second nontravel-related case was confirmed in the state of Washington (4,5). Examination of four lines of evidence provides insight into the timing of introduction and early transmission of SARS-CoV-2, the virus that causes COVID-19, into the United States before the detection of these two cases. First, syndromic surveillance based on emergency department records from counties affected early by the pandemic did not show an increase in visits for COVID-19-like illness before February 28. Second, retrospective SARS-CoV-2 testing of approximately 11,000 respiratory specimens from several U.S. locations beginning January 1 identified no positive results before February 20. Third, analysis of viral RNA sequences from early cases suggested that a single lineage of virus imported directly or indirectly from China began circulating in the United States between January 18 and February 9, followed by several SARS-CoV-2 importations from Europe. Finally, the occurrence of three cases, one in a California resident who died on February 6, a second in another resident of the same county who died February 17, and a third in an unidentified passenger or crew member aboard a Pacific cruise ship that left San Francisco on February 11, confirms cryptic circulation of the virus by early February. These data indicate that sustained, community transmission had begun before detection of the first two nontravel-related U.S. cases, likely resulting from the importation of a single lineage of virus from China in late January or early February, followed by several importations from Europe. The widespread emergence of COVID-19 throughout the United States after February highlights the importance of robust public health systems to respond rapidly to emerging infectious threats. |
Respiratory Illness Associated With Emergent Human Adenovirus Genome Type 7d, New Jersey, 2016-2017.
Killerby ME , Rozwadowski F , Lu X , Caulcrick-Grimes M , McHugh L , Haldeman AM , Fulton T , Schneider E , Sakthivel SK , Bhatnagar J , Rabeneck DB , Zaki S , Gerber SI , Watson JT . Open Forum Infect Dis 2019 6 (2) ofz017 ![]() ![]() Background: Human adenoviruses (HAdVs) are known causes of respiratory illness outbreaks in congregate settings, but cases and clusters are less well described from community settings in the United States. During December 2016-February 2017, the New Jersey Department of Health received reports of HAdV infections from 3 sources in 3 adjacent counties. We investigated to characterize the epidemiologic, laboratory, and clinical features of this HAdV outbreak. Methods: A case was defined as a New Jersey resident with acute respiratory illness during December 1, 2016-March 31, 2017 with laboratory identification of HAdV genome type 7d (HAdV-7d). Human adenovirus was detected by real-time and conventional polymerase chain reaction and molecular typed by partial hexon capsid protein gene sequencing. The HAdV genome type was identified by whole genome sequencing analysis. Available medical, public health, and surveillance records were reviewed. Results: We identified 12 cases, including 3 treatment facility patients, 7 college students, and 2 cases at a tertiary-care hospital. Four cases died; all had underlying comorbidities. Nine HAdV-7d whole genome sequences obtained from all 3 sites were nearly identical. Conclusions: Transmission of HAdV-7d occurred in community and congregate settings across 3 counties and resulted in severe morbidity and mortality in some cases with underlying comorbidities. Clinicians and local and state health departments should consider HAdV in patients with severe respiratory infection. |
Outbreak of Tattoo-Associated Nontuberculous Mycobacterial Skin Infections.
Griffin I , Schmitz A , Oliver C , Pritchard S , Zhang G , Rico E , Davenport E , Llau A , Moore E , Fernandez D , Mejia-Echeverry A , Suarez J , Noya-Chaveco P , Elmir S , Jean R , Pettengill JB , Hollinger KA , Chou K , Williams-Hill D , Zaki S , Muehlenbachs A , Keating MK , Bhatnagar J , Rowlinson MC , Chiribau C , Rivera L . Clin Infect Dis 2018 69 (6) 949-955 ![]() ![]() BACKGROUND: On April 29, 2015, the Florida Department of Health in Miami-Dade County (DOH-Miami-Dade) was notified by a local dermatologist of three patients with suspect nontuberculous mycobacterial (NTM) infection after receiving tattoos at a local tattoo studio. METHODS: DOH-Miami-Dade conducted interviews and offered testing, described below, to tattoo studio clients reporting rashes. Culture of clinical isolates and identification were performed at the Florida Bureau of Public Health Laboratories (BPHL). Characterization of NTM was performed by the Centers for Disease Control and Prevention (CDC) and the United States Food and Drug Administration (FDA), respectively. Whole-genome sequencing (WGS) and single-nucleotide polymorphism (SNP) analyses were used to construct a phylogeny among 21 Mycobacterium isolates at FDA. RESULTS: Thirty-eight of 226 interviewed clients were identified as outbreak-associated cases. Multivariate logistic regression revealed individuals who reported grey tattoo ink in their tattoos were 8.2 times as likely to report a rash [95% CI: 3.07-22.13]. Multiple NTM species were identified in clinical and environmental specimens. Phylogenetic results from environmental samples and skin biopsies indicated that two M. fortuitum isolates (greywash ink and a skin biopsy) and 11 M. abscessus isolates (five from the implicated bottle of greywash tattoo ink, two from tap water, and four from skin biopsies) were indistinguishable. In addition, M. chelonae was isolated from five unopened bottles of greywash ink provided by two other tattoo studios in Miami-Dade County. CONCLUSIONS: WGS and SNP analyses identified the tap water and the bottle of greywash tattoo ink as the sources of the NTM infections. |
Zika Virus RNA Replication and Persistence in Brain and Placental Tissue.
Bhatnagar J , Rabeneck DB , Martines RB , Reagan-Steiner S , Ermias Y , Estetter LB , Suzuki T , Ritter J , Keating MK , Hale G , Gary J , Muehlenbachs A , Lambert A , Lanciotti R , Oduyebo T , Meaney-Delman D , Bolanos F , Saad EA , Shieh WJ , Zaki SR . Emerg Infect Dis 2017 23 (3) 405-414 ![]() Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections. |
Malignant Transformation of Hymenolepis nana in a Human Host.
Muehlenbachs A , Bhatnagar J , Agudelo CA , Hidron A , Eberhard ML , Mathison BA , Frace MA , Ito A , Metcalfe MG , Rollin DC , Visvesvara GS , Pham CD , Jones TL , Greer PW , Velez Hoyos A , Olson PD , Diazgranados LR , Zaki SR . N Engl J Med 2015 373 (19) 1845-52 ![]() Neoplasms occur naturally in invertebrates but are not known to develop in tapeworms. We observed nests of monomorphic, undifferentiated cells in samples from lymph-node and lung biopsies in a man infected with the human immunodeficiency virus (HIV). The morphologic features and invasive behavior of the cells were characteristic of cancer, but their small size suggested a nonhuman origin. A polymerase-chain-reaction (PCR) assay targeting eukaryotes identified Hymenolepis nana DNA. Although the cells were unrecognizable as tapeworm tissue, immunohistochemical staining and probe hybridization labeled the cells in situ. Comparative deep sequencing identified H. nana structural genomic variants that are compatible with mutations described in cancer. Invasion of human tissue by abnormal, proliferating, genetically altered tapeworm cells is a novel disease mechanism that links infection and cancer. |
Localization of pandemic 2009 H1N1 influenza A virus RNA in lung and lymph nodes of fatal influenza cases by in situ hybridization: new insights on virus replication and pathogenesis.
Bhatnagar J , Jones T , Blau DM , Shieh WJ , Paddock CD , Drew C , Denison AM , Rollin DC , Patel M , Zaki SR . J Clin Virol 2012 56 (3) 232-7 ![]() BACKGROUND: Pandemic 2009 H1N1 influenza A (pH1N1) virus has caused substantial morbidity and mortality globally and continues to circulate. Although pH1N1 viral antigens have been demonstrated in various human tissues by immunohistochemistry (IHC), cellular localization of pH1N1 RNA in these tissues has largely remained uninvestigated. OBJECTIVES: To examine the distribution of pH1N1 RNA in tissues of fatal cases in order to understand the virus tissue tropism, replication and disease pathogenesis. STUDY DESIGN: Formalin-fixed, paraffin embedded autopsy tissues from 21 patients with confirmed pH1N1 infection were analyzed by influenza A IHC and by in situ hybridization (ISH) using DIG-labeled sense (detects viral RNA) and antisense probes (detects positive-stranded mRNA and cRNA) targeting the nucleoprotein gene of pH1N1 virus. RESULTS: pH1N1 RNA was localized by ISH in 57% of cases while viral antigens were detected by IHC in 76%. However, in cases with a short duration of illness (1-3 days), more cases (69%) were positive by ISH than IHC (62%). Strong ISH staining was detected by antisense probes in the alveolar pneumocytes of the lungs, mucous glands and in lymph nodes. IHC staining of viral antigens was demonstrated in the lung pneumocytes and mucous glands, but no immunostaining was detected in any of the lymph nodes examined. CONCLUSIONS: This study demonstrates cellular localization of positive-stranded pH1N1 RNA in the lungs, mucous glands and lymph nodes that suggests viral replication in these tissues. The novel ISH assay can be a useful adjunct for the detection of pH1N1 virus in tissues and for pathogenesis studies. |
Molecular detection and typing of dengue viruses from archived tissues of fatal cases by rt-PCR and sequencing: diagnostic and epidemiologic implications.
Bhatnagar J , Blau DM , Shieh WJ , Paddock CD , Drew C , Liu L , Jones T , Patel M , Zaki SR . Am J Trop Med Hyg 2012 86 (2) 335-40 ![]() Diagnosis of dengue virus (DENV) infection in fatal cases is challenging because of the frequent unavailability of blood or fresh tissues. For formalin-fixed, paraffin-embedded (FFPE) tissues immunohistochemistry (IHC) can be used; however, it may not be as sensitive and serotyping is not possible. The application of reverse transcription-polymerase chain reaction (RT-PCR) for the detection of DENV in FFPE tissues has been very limited. We evaluated FFPE autopsy tissues of 122 patients with suspected DENV infection by flavivirus and DENV RT-PCR, sequencing, and DENV IHC. The DENV was detected in 61 (50%) cases by RT-PCR or IHC. The RT-PCR and sequencing detected DENV in 60 (49%) cases (DENV-1 in 16, DENV-2 in 27, DENV-3 in 8, and DENV-4 in 6 cases). No serotype could be identified in three cases. The IHC detected DENV antigens in 50 (40%) cases. The RT-PCR using FFPE tissue improves detection of DENV in fatal cases and provides sequence information useful for typing and epidemiologic studies. |
Diagnosis of influenza from respiratory autopsy tissues: detection of virus by real-time reverse transcription-PCR in 222 cases.
Denison AM , Blau DM , Jost HA , Jones T , Rollin D , Gao R , Liu L , Bhatnagar J , Deleon-Carnes M , Shieh WJ , Paddock CD , Drew C , Adem P , Emery SL , Shu B , Wu KH , Batten B , Greer PW , Smith CS , Bartlett J , Montague JL , Patel M , Xu X , Lindstrom S , Klimov AI , Zaki SR . J Mol Diagn 2011 13 (2) 123-8 ![]() The recent influenza pandemic, caused by a novel H1N1 influenza A virus, as well as the seasonal influenza outbreaks caused by varieties of influenza A and B viruses, are responsible for hundreds of thousands of deaths worldwide. Few studies have evaluated the utility of real-time reverse transcription-PCR to detect influenza virus RNA from formalin-fixed, paraffin-embedded tissues obtained at autopsy. In this work, respiratory autopsy tissues from 442 suspect influenza cases were tested by real-time reverse transcription-PCR for seasonal influenza A and B and 2009 pandemic influenza A (H1N1) viruses and the results were compared to those obtained by immunohistochemistry. In total, 222 cases were positive by real-time reverse transcription-PCR, and of 218 real-time, reverse transcription-PCR-positive cases also tested by immunohistochemistry, only 107 were positive. Although formalin-fixed, paraffin-embedded tissues can be used for diagnosis, frozen tissues offer the best chance to make a postmortem diagnosis of influenza because these tissues possess nucleic acids that are less degraded and, as a consequence, provide longer sequence information than that obtained from fixed tissues. We also determined that testing of all available respiratory tissues is critical for optimal detection of influenza virus in postmortem tissues. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure