Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Bennett JS[original query] |
---|
Superposition of Droplet and Aerosol risk in the transmission of SARS-CoV-2 (preprint)
McCarthy JE , Dewitt BD , Dumas BA , Bennett JS . medRxiv 2022 29 Objectives. Considering three viral transmission routes: fomite contact, aerial transmission by droplets, and aerial transmission by aerosols, the aerial routes have been the focus of debate about the relative role of droplets and aerosols in SARS-CoV-2 infection. We seek to quantify infection risk in an enclosed space via short-range airborne transmission from droplets and long-range risk from aerosols toward focusing public health measures. Methods. Data from three published studies were analyzed to predict relative exposure at distances of 1 m and farther, mediated by droplet size divided into two bins: larger than 8 microm and smaller than 75 microm (medium droplets) and smaller than 8 microm (small droplets or aerosols). The results at 1 m from an infectious individual were treated as a boundary condition to model infection risk at greater distance. At all distances, infection risk was treated as the sum of exposure to small and medium droplets. It was assumed that number of virions is proportional to droplet volume. Results. The largest infection risk (as exposure to droplet volume) came from medium droplets, close to the infectious individual out to approximately 1 m. Farther away, the largest risk was due to aerosols. For one model, medium droplet exposure disappeared at 1.8 m. Conclusions. Policy concerning social distancing for meaningful infection reduction relies on droplet exposure as a function of distance, yet within this construct droplet size determines respiratory deposition. This two-fold distance effect can be used to evaluate additional measures such as plexiglass barriers and masking. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. |
Evaluating vacant middle seats and masks as Coronavirus exposure reduction strategies in aircraft cabins using particle tracer experiments and computational fluid dynamics simulations.
Bennett JS , Mahmoud S , Dietrich W , Jones B , Hosni M . Eng Rep 2022 e12582 Aircraft cabins have high-performance ventilation systems, yet typically hold many persons in close proximity for long durations. The current study estimated airborne virus exposure and infection reductions when middle seats are vacant compared to full occupancy and when passengers wear surgical masks in aircraft. Tracer particle data reported by U.S. Transportation Command (TRANSCOM) and CFD simulations reported by Boeing were used along with NIOSH data, to build nonlinear regression models with particle exposure and distance from particle source as variables. These models that estimate exposure at given distances from the viral source were applied to evaluate exposure reductions from vacant middle seats. Reductions averaged 54% for the seat row where an infectious passenger is located and 36% for a 24-row cabin containing one infectious passenger, with middle seats vacant. Analysis of the TRANSCOM data showed that universal masking (surgical masks) reduced exposures by 62% and showed masking and physical distancing provide further reductions when practiced together. For a notional scenario involving 10 infectious passengers, compared with no intervention, masking, distancing, and both would prevent 6.2, 3.8, and 7.6 secondary infections, respectively, using the Wells–Riley equation. These results suggest distancing alone, masking alone, and these practiced together reduce SARS CoV-2 exposure risk in increasing order of effectiveness, when an infectious passenger is present. © 2022 The Authors. Engineering Reports published by John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. |
The effect of the body wake and operator motion on the containment of nanometer-scale airborne substances using a conventional fume hood and specially designed enclosing hood: a comparison using computational fluid dynamics
Shen C , Dunn KH , Woskie SR , Bennett JS , Ellenbecker MJ , Dandy DS , Tsai CSJ . J Nanopart Res 2022 24 (4) Airborne substances in the nanoparticle size range would mostly follow the primary airflow patterns, which emphasizes the importance of understanding the airflow dynamics to effectively control exposures to toxic airborne substances such as nanometer-sized particles. Chemical fume hoods are being utilized as primary controls for worker exposure to airborne substances including nanometer-scale materials due to their overall availability and history of effective contaminant. This study evaluates the impact of the body wake on the containment performance of a conventional constant air volume (CAV) and a new “nano” ventilated enclosing hood using numerical methods. Numerical studies have been performed to predict leaks of nanomaterials handled inside the hood. We further performed experiments in this study to validate the velocity fields predicted by the computational fluid dynamic (CFD) models and to provide a basis for evaluating the impact of the human body on fume hood containment performance. Using these validated models, the effects of the motion of the arms moving out of the hood were simulated using CFD to assess how one of the common actions of an operator/user may affect containment. Results of our simulations show that areas near the hood side airfoils and directly behind the sash are more likely to concentrate contaminants released inside the hood and potentially result in leakage based on internal airflow patterns. These areas are key to monitor when assessing fume hood containment along with the operator/mannequin breathing zone to get an understanding of potential leak areas which might contribute to operator exposure as well as exposure to others inside the laboratory. © 2022, The Author(s), under exclusive licence to Springer Nature B.V. |
Laboratory Modeling of SARS-CoV-2 Exposure Reduction Through Physically Distanced Seating in Aircraft Cabins Using Bacteriophage Aerosol - November 2020.
Dietrich WL , Bennett JS , Jones BW , Hosni MH . MMWR Morb Mortal Wkly Rep 2021 70 (16) 595-599 Aircraft can hold large numbers of persons in close proximity for long periods, which can increase the risk for transmission of infectious disease.* Current CDC guidelines recommend against travel for persons who have not been vaccinated against COVID-19, and a January 2021 CDC order requires masking for all persons while on airplanes.(†)(,)(§) Research suggests that seating proximity on aircraft is associated with increased risk for infection with SARS-CoV-2, the virus that causes COVID-19 (1,2). However, studies quantifying the benefit of specific distancing strategies to prevent transmission, such as keeping aircraft cabin middle seats vacant, are limited. Using bacteriophage MS2 virus as a surrogate for airborne SARS-CoV-2, CDC and Kansas State University (KSU) modeled the relationship between SARS-CoV-2 exposure and aircraft seating proximity, including full occupancy and vacant middle seat occupancy scenarios. Compared with exposures in full occupancy scenarios, relative exposure in vacant middle seat scenarios was reduced by 23% to 57% depending upon the modeling approach. A 23% exposure reduction was observed for a single passenger who was in the same row and two seats away from the SARS-COV-2 source, rather than in an adjacent middle seat. When quantifying exposure reduction to a full 120-passenger cabin rather than to a single person, exposure reductions ranging from 35.0% to 39.4% were predicted. A 57% exposure reduction was observed under the vacant middle seat condition in a scenario involving a three-row section that contained a mix of SARS-CoV-2 sources and other passengers. Based on this laboratory model, a vacant middle seat reduces risk for exposure to SARS-CoV-2 from nearby passengers. These data suggest that increasing physical distance between passengers and lowering passenger density could help reduce potential COVID-19 exposures during air travel. Physical distancing of airplane passengers, including through policies such as middle seat vacancy, could provide additional reductions in SARS-CoV-2 exposure risk. |
Hexavalent chromium and isocyanate exposures during military aircraft painting under crossflow ventilation
Bennett JS , Marlow DA , Nourian F , Breay J , Hammond D . J Occup Environ Hyg 2015 13 (5) 1-50 Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 microg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 microg/m3, and 7 out of 12 exceeded the threshold limit value of 10 microg/m3, with means 38 microg/m3 for sprayers and 8.3 microg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 microg/m3 for sprayers and 0.645 microg/m3 for hosemen. Total reactive isocyanate group-the total of monomer and oligomer as NCO group mass-showed six of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 microg/m3, with means 50.9 microg/m3 for sprayers and 7.29 microg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re-circulations, turbulence, and fugitive emissions, while wasting energy. Smoke releases showing more effective ventilation here than in other aircraft painting facilities carries technical feasibility relevance. |
Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies
Dunn KH , Tsai CS , Woskie SR , Bennett JS , Garcia A , Ellenbecker MJ . J Occup Environ Hyg 2014 11 (10) D164-73 The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in background concentrations to allow for increased sensitivity. |
Airborne exposure patterns from a passenger source in aircraft cabins
Bennett JS , Jones BW , Hosni MH , Zhang Y , Topmiller JL , Dietrich WL . HVAC&R Res 2013 19 (8) 962-973 Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraft-cabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure