Last data update: Nov 04, 2024. (Total: 48056 publications since 2009)
Records 1-23 (of 23 Records) |
Query Trace: Battelli LA[original query] |
---|
Absence of lung tumor promotion with reduced tumor size in mice after inhalation of copper welding fumes
Zeidler-Erdely PC , Kodali V , Falcone LM , Mercer R , Leonard SS , Stefaniak AB , Grose L , Salmen R , Trainor-DeArmitt T , Battelli LA , McKinney W , Stone S , Meighan TG , Betler E , Friend S , Hobbie KR , Service S , Kashon M , Antonini JM , Erdely A . Carcinogenesis 2024 Welding fumes are a Group 1 (carcinogenic to humans) carcinogen as classified by the International Agency for Research on Cancer. The process of welding creates inhalable fumes rich in iron (Fe) that may also contain known carcinogenic metals such as chromium (Cr) and nickel (Ni). Epidemiological evidence has shown that both mild-steel (Fe-rich) and stainless steel (Fe-rich + Cr + Ni) welding fume exposure increase lung cancer risk, and experimental animal data support these findings. Copper-nickel (CuNi) welding processes have not been investigated in the context of lung cancer. Cu is intriguing, however, given the role of Cu in carcinogenesis and cancer therapeutics. This study examines the potential for a CuNi fume to induce mechanistic key characteristics of carcinogenesis in vitro and to promote lung tumorigenesis, using a two-stage mouse bioassay, in vivo. Male A/J mice, initiated with 3-methylcholanthrene (MCA; 10 µg/g), were exposed to CuNi fumes or air by whole-body inhalation for nine weeks (low-deposition-LD and high deposition-HD) then sacrificed at 30 weeks. In BEAS-2B cells, the CuNi fume induced micronuclei and caused DNA damage as measured by γ-H2AX. The fume exhibited high reactivity and a dose response in cytotoxicity and oxidative stress. In vivo, MCA/CuNi HD and LD significantly decreased lung tumor size and adenomas. MCA/CuNi HD exposure significantly decreased gross-evaluated tumor number. In summary, the CuNi fume in vitro exhibited characteristics of a carcinogen, but in vivo the exposure resulted in smaller tumors, fewer adenomas, less hyperplasia severity, and with the HD exposure, less overall lung lesion/tumors. |
Tumorigenic response in lung tumor susceptible A/J mice after sub-chronic exposure to calcium chromate or iron (III) oxide
Zeidler-Erdely PC , Falcone LM , Antonini JM , Fraser K , Kashon ML , Battelli LA , Salmen R , Trainor T , Grose L , Friend S , Yang C , Erdely A . Toxicol Lett 2020 334 60-65 Iron oxides are Group 3 (not classifiable as to its carcinogenicity to humans) according to the International Agency for Research on Cancer (IARC). Occupational exposures during iron and steel founding and hematite underground mining as well as other iron predominant exposures such as welding are Group 1 (carcinogenic to humans). The objective of this study was to investigate the potential of iron as iron (III) oxide (Fe(2)O(3)) to initiate lung tumors in A/J mice, a lung tumor susceptible strain. Male A/J mice were exposed by oropharyngeal aspiration to suspensions of Fe(2)O(3) (1 mg) or calcium chromate (CaCrO(4); 100 µg; positive control) for 26 weeks (once per week). Shams were exposed to 50 µL phosphate buffered saline (PBS; vehicle). Mice were euthanized 70 weeks after the first exposure and lung nodules were enumerated. Both CaCrO(4) and Fe(2)O(3) significantly increased gross-observed lung tumor multiplicity in A/J mice (9.63 ± 0.55 and 3.35 ± 0.30, respectively) compared to sham (2.31 ± 0.19). Histopathological analysis showed that bronchiolo-alveolar adenomas (BAA) and carcinomas (BAC) were the primary lung tumor types in all groups and were increased in the exposed groups compared to sham. BAC were significantly increased (146 %) in the CaCrO(4) group and neared significance in the Fe(2)O(3) group (100 % increase; p = 0.085). BAA and other histopathological indices of toxicity followed the same pattern with exposed groups increased compared to sham control. In conclusion, evidence from this study, in combination with our previous studies, demonstrate that exposure to iron alone may be a potential risk factor for lung carcinogenesis. |
Resolution of pulmonary inflammation induced by carbon nanotubes and fullerenes in mice: Role of macrophage polarization
Lim CS , Porter DW , Orandle MS , Green BJ , Barnes MA , Croston TL , Wolfarth MG , Battelli LA , Andrew ME , Beezhold DH , Siegel PD , Ma Q . Front Immunol 2020 11 1186 Pulmonary exposure to certain engineered nanomaterials (ENMs) causes chronic lesions like fibrosis and cancer in animal models as a result of unresolved inflammation. Resolution of inflammation involves the time-dependent biosynthesis of lipid mediators (LMs)-in particular, specialized pro-resolving mediators (SPMs). To understand how ENM-induced pulmonary inflammation is resolved, we analyzed the inflammatory and pro-resolving responses to fibrogenic multi-walled carbon nanotubes (MWCNTs, Mitsui-7) and low-toxicity fullerenes (fullerene C60, C60F). Pharyngeal aspiration of MWCNTs at 40 mug/mouse or C60F at a dose above 640 mug/mouse elicited pulmonary effects in B6C3F1 mice. Both ENMs stimulated acute inflammation, predominated by neutrophils, in the lung at day 1, which transitioned to histiocytic inflammation by day 7. By day 28, the lesion in MWCNT-exposed mice progressed to fibrotic granulomas, whereas it remained as alveolar histiocytosis in C60F-exposed mice. Flow cytometric profiling of whole lung lavage (WLL) cells revealed that neutrophil recruitment was the greatest at day 1 and declined to 36.6% of that level in MWCNT- and 16.8% in C60F-treated mice by day 7, and to basal levels by day 28, suggesting a rapid initiation phase and an extended resolution phase. Both ENMs induced high levels of proinflammatory leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) with peaks at day 1, and high levels of SPMs resolvin D1 (RvD1) and E1 (RvE1) with peaks at day 7. MWCNTs and C60F induced time-dependent polarization of M1 macrophages with a peak at day 1 and subsequently of M2 macrophages with a peak at day 7 in the lung, accompanied by elevated levels of type 1 or type 2 cytokines, respectively. M1 macrophages exhibited preferential induction of arachidonate 5-lipoxygenase activating protein (ALOX5AP), whereas M2 macrophages had a high level expression of arachidonate 15-lipoxygenase (ALOX15). Polarization of macrophages in vitro differentially induced ALOX5AP in M1 macrophages or ALOX15 in M2 macrophages resulting in increased preferential biosynthesis of proinflammatory LMs or SPMs. MWCNTs increased the M1- or M2-specific production of LMs accordingly. These findings support a mechanism by which persistent ENM-induced neutrophilic inflammation is actively resolved through time-dependent polarization of macrophages and enhanced biosynthesis of specialized LMs via distinct ALOX pathways. |
Flavorings-related lung disease: A brief review and new mechanistic data
Hubbs AF , Kreiss K , Cummings KJ , Fluharty KL , O'Connell R , Cole A , Dodd TM , Clingerman SM , Flesher JR , Lee R , Pagel S , Battelli LA , Cumpston A , Jackson M , Kashon M , Orandle MS , Fedan JS , Sriram K . Toxicol Pathol 2019 47 (8) 192623319879906 Flavorings-related lung disease is a potentially disabling and sometimes fatal lung disease of workers making or using flavorings. First identified almost 20 years ago in microwave popcorn workers exposed to butter-flavoring vapors, flavorings-related lung disease remains a concern today. In some cases, workers develop bronchiolitis obliterans, a severe form of fixed airways disease. Affected workers have been reported in microwave popcorn, flavorings, and coffee production workplaces. Volatile alpha-dicarbonyl compounds, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are implicated in the etiology. Published studies on diacetyl and 2,3-pentanedione document their ability to cause airway epithelial necrosis, damage biological molecules, and perturb protein homeostasis. With chronic exposure in rats, they produce airway fibrosis resembling bronchiolitis obliterans. To add to this knowledge, we recently evaluated airway toxicity of the 3-carbon alpha-dicarbonyl compound, methylglyoxal. Methylglyoxal inhalation causes epithelial necrosis at even lower concentrations than diacetyl. In addition, we investigated airway toxicity of mixtures of diacetyl, acetoin, and acetic acid, common volatiles in butter flavoring. At ratios comparable to workplace scenarios, the mixtures or diacetyl alone, but not acetic acid or acetoin, cause airway epithelial necrosis. These new findings add to existing data to implicate alpha-dicarbonyl compounds in airway injury and flavorings-related lung disease. |
Mouse pulmonary response to dust from sawing Corian(R), a solid-surface composite material
Mandler WK , Qi C , Orandle MS , Sarkisian K , Mercer RR , Stefaniak AB , Knepp AK , Bowers LN , Battelli LA , Shaffer J , Friend SA , Qian Y , Sisler JD . J Toxicol Environ Health A 2019 82 (11) 1-19 Corian(R), a solid-surface composite (SSC), is composed of alumina trihydrate and acrylic polymer. The aim of the present study was to examine the pulmonary toxicity attributed to exposure to SSC sawing dust. Male mice were exposed to either phosphate buffer saline (PBS, control), 62.5, 125, 250, 500, or 1000 microg of SSC dust, or 1000 microg silica (positive control) via oropharyngeal aspiration. Body weights were measured for the duration of the study. Bronchoalveolar lavage fluid (BALF) and tissues were collected for analysis at 1 and 14 days post-exposure. Enhanced-darkfield and histopathologic analysis was performed to assess particle distribution and inflammatory responses. BALF cells and inflammatory cytokines were measured. The geometric mean diameter of SSC sawing dust following suspension in PBS was 1.25 microm. BALF analysis indicated that lactate dehydrogenase (LDH) activity, inflammatory cells, and pro-inflammatory cytokines were significantly elevated in the 500 and 1000 microg SSC exposure groups at days 1 and 14, suggesting that exposure to these concentrations of SSC induced inflammatory responses, in some cases to a greater degree than the silica positive control. Histopathology indicated the presence of acute alveolitis at all doses at day 1, which was largely resolved by day 14. Alveolar particle deposition and granulomatous mass formation were observed in all exposure groups at day 14. The SSC particles were poorly cleared, with 81% remaining at the end of the observation period. These findings demonstrate that SSC sawing dust exposure induces pulmonary inflammation and damage that warrants further investigation. Abbreviations: ANOVA: Analysis of Variance; ATH: Alumina Trihydrate; BALF: Bronchoalveolar Lavage Fluid; Dpg: Geometric Mean Diameter; FE-SEM: Field Emission Scanning Electron Microscopy; IACUC: Institutional Animal Care and Use Committee; IFN-gamma: Interferon Gamma; IL-1 Beta: Interleukin-1 Beta; IL-10: Interleukin-10; IL-12: Interleukin-12; IL-2: Interleukin-2; IL-4: Interleukin-4; IL-5: Interleukin-5; IL-6: Interleukin-6; KC/GRO: Neutrophil-Activating Protein 3; MMAD: Mass Median Aerodynamic Diameter; PBS: Phosphate-Buffered Saline; PEL: Permissible Exposure Limit; PM: Polymorphonuclear Leukocytes; PNOR: Particles Not Otherwise Regulated; SEM/EDX: Scanning Electron Microscope/Energy-Dispersive X-Ray; SSA: Specific Surface Area; SSC: Solid Surface Composite; TNFalpha: Tumor Necrosis Factor-Alpha; VOC: Volatile Organic Compounds; sigmag: Geometric Standard Deviation. |
Toxicological assessment of dust from sanding micronized copper-treated lumber in vivo
Sisler JD , Mandler WK , Shaffer J , Lee T , McKinney WG , Battelli LA , Orandle MS , Thomas TA , Castranova VC , Qi C , Porter DW , Andrew ME , Fedan JS , Mercer RR , Qian Y . J Hazard Mater 2019 373 630-639 Micronized copper azole (MCA) is a lumber treatment improve longevity. In this study, the in vivo response to PM2.5 sanding dust generated from MCA-treated lumber was compared to that of untreated yellow pine (UYP) or soluble copper azole-treated (CA-C) lumber to determine if the MCA was more bioactive than CA-C. Mice were exposed to doses (28, 140, or 280 mug/mouse) of UYP, MCA, or CA-C sanding dust using oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) lactate dehydrogenase activity was increased at 1 day post-exposure to 280 mug/mouse of MCA and CA-C compared to UYP. BALF polymorphonuclear cells were increased by MCA and CA-C. There were increases in BALF cytokines in MCA and CA-C-exposed groups at 1 day post-exposure. Lung histopathology indicated inflammation with infiltration of neutrophils and macrophages. Pulmonary responses were more severe in MCA and CA-C-exposed groups at 1 day post-exposure. MCA caused more severe inflammatory responses than CA-C at 1 day post-exposure. These findings suggest that the MCA and CA-C sanding dusts are more bioactive than the UYP sanding dust, and, moreover, the MCA sanding dust is more bioactive in comparison to the CA-C sanding dust. No chronic toxic effects were observed among all observed sanding dusts. |
Inhalation of iron-abundant gas metal arc welding-mild steel fume promotes lung tumors in mice
Falcone LM , Erdely A , Kodali V , Salmen R , Battelli LA , Dodd T , McKinney W , Stone S , Donlin M , Leonard HD , Cumpston JL , Cumpston JB , Andrews RN , Kashon ML , Antonini JM , Zeidler-Erdely PC . Toxicology 2018 409 24-32 Welding fumes were reclassified as a Group 1 carcinogen by the International Agency for Research on Cancer in 2017. Gas metal arc welding (GMAW) is a process widely used in industry. Fume generated from GMAW-mild steel (MS) is abundant in iron with some manganese, while GMAW-stainless steel (SS) fume also contains significant amounts of chromium and nickel, known carcinogenic metals. It has been shown that exposure to GMAW-SS fume in A/J mice promotes lung tumors. The objective was to determine if GMAW-MS fume, which lacks known carcinogenic metals, also promotes lung tumors in mice. Male A/J mice received a single intraperitoneal injection of corn oil or the initiator 3-methylcholanthrene (MCA; 10 mug/g) and, one week later, were exposed by whole-body inhalation to GMAW-MS aerosols for 4 hours/day x 4 days/week x 8 weeks at a mean concentration of 34.5 mg/m(3). Lung nodules were enumerated by gross examination at 30 weeks post-initiation. GMAW-MS fume significantly increased lung tumor multiplicity in mice initiated with MCA (21.86 +/- 1.50) compared to MCA/air-exposed mice (8.34 +/- 0.59). Histopathological analysis confirmed these findings and also revealed an absence of inflammation. Bronchoalveolar lavage analysis also indicated a lack of lung inflammation and toxicity after short-term inhalation exposure to GMAW-MS fume. In conclusion, this study demonstrates that inhalation of GMAW-MS fume promotes lung tumors in vivo and aligns with epidemiologic evidence that shows MS welders, despite less exposure to carcinogenic metals, are at an increased risk for lung cancer. |
The fate of inhaled nanoparticles: Detection and measurement by enhanced dark-field microscopy
Mercer RR , Scabilloni JF , Wang L , Battelli LA , Antonini JM , Roberts JR , Qian Y , Sisler JD , Castranova V , Porter DW , Hubbs AF . Toxicol Pathol 2017 46 (1) 192623317732321 Assessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues. Enhanced dark-field microscopy (EDM) is an adaption of the light microscope that images scattered light. Nanoparticles scatter light with high efficiency while normal tissues do not. EDM has the potential to identify the critical target sites for nanoparticle deposition and injury in the lungs and other organs. This study describes the methods for EDM imaging of nanoparticles and applications. Examples of EDM application include measurement of deposition and clearance patterns. Imaging of a wide variety of nanoparticles demonstrated frequent situations where nanoparticles detected by EDM were not visible by light microscopy. EDM examination of colloidal gold nanospheres (10-100 nm diameter) demonstrated a detection size limit of approximately 15 nm in tissue sections. EDM determined nanoparticle volume density was directly proportional to total lung burden of exposed animals. The results confirm that EDM can determine nanoparticle distribution, clearance, transport to lymph nodes, and accumulation in extrapulmonary organs. Thus, EDM substantially improves the qualitative and quantitative microscopic evaluation of inhaled nanoparticles. |
Inhalation of gas metal arc-stainless steel welding fume promotes lung tumorigenesis in A/J mice
Falcone LM , Erdely A , Meighan TG , Battelli LA , Salmen R , McKinney W , Stone S , Cumpston A , Cumpston J , Andrews RN , Kashon M , Antonini JM , Zeidler-Erdely PC . Arch Toxicol 2017 91 (8) 2953-2962 Epidemiologic studies suggest an increased risk of lung cancer with exposure to welding fumes, but controlled animal studies are needed to support this association. Oropharyngeal aspiration of collected "aged" gas metal arc-stainless steel (GMA-SS) welding fume has been shown by our laboratory to promote lung tumor formation in vivo using a two-stage initiation-promotion model. Our objective in this study was to determine whether inhalation of freshly generated GMA-SS welding fume also acts as a lung tumor promoter in lung tumor-susceptible mice. Male A/J mice received intraperitoneal (IP) injections of corn oil or the chemical initiator 3-methylcholanthrene (MCA; 10 microg/g) and 1 week later were exposed by whole-body inhalation to air or GMA-SS welding aerosols for 4 h/d x 4 d/w x 9 w at a target concentration of 40 mg/m3. Lung nodules were enumerated at 30 weeks post-initiation. GMA-SS fume significantly promoted lung tumor multiplicity in A/J mice initiated with MCA (16.11 +/- 1.18) compared to MCA/air-exposed mice (7.93 +/- 0.82). Histopathological analysis found that the increased number of lung nodules in the MCA/GMA-SS group were hyperplasias and adenomas, which was consistent with developing lung tumorigenesis. Metal deposition analysis in the lung revealed a lower deposited dose, approximately fivefold compared to our previous aspiration study, still elicited a significant lung tumorigenic response. In conclusion, this study demonstrates that inhaling GMA-SS welding fume promotes lung tumorigenesis in vivo which is consistent with the epidemiologic studies that show welders may be at an increased risk for lung cancer. |
Accumulation of ubiquitin and sequestosome-1 implicate protein damage in diacetyl-induced cytotoxicity
Hubbs AF , Fluharty KL , Edwards RJ , Barnabei JL , Grantham JT , Palmer SM , Kelly F , Sargent LM , Reynolds SH , Mercer RR , Goravanahally MP , Kashon ML , Honaker JC , Jackson MC , Cumpston AM , Goldsmith WT , McKinney W , Fedan JS , Battelli LA , Munro T , Bucklew-Moyers W , McKinstry K , Schwegler-Berry D , Friend S , Knepp AK , Smith SL , Sriram K . Am J Pathol 2016 186 (11) 2887-2908 Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive alpha-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this alpha-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the alpha-dicarbonyl group in the protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal markers lysosomal-associated membrane protein 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease. |
Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents.
Dong J , Yu X , Porter DW , Battelli LA , Kashon ML , Ma Q . Arch Toxicol 2015 90 (2) 385-402 Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genome-wide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. |
Investigation of the pulmonary bioactivity of double-walled carbon nanotubes
Sager TM , Wolfarth MW , Battelli LA , Leonard SS , Andrew M , Steinbach T , Endo M , Tsuruoka S , Porter DW , Castranova V . J Toxicol Environ Health A 2013 76 (15) 922-36 Double-walled carbon nanotubes (DWCNT) are a rather new and unexplored variety of carbon nanotubes. Previously conducted studies established that exposure to a variety of carbon nanotubes produced lung inflammation and fibrosis in mice after pharyngeal aspiration. However, the bioactivity of double-walled carbon nanotubes (DWCNT) has not been determined. In this study, the hypothesis that DWCNT would induce pulmonary toxicity was explored by analyzing the pulmonary bioactivity of DWCNT. To test this hypothesis, C57Bl/6 mice were exposed to DWCNT by pharyngeal aspiration. Mice underwent whole-lung lavage (WLL) to assess pulmonary inflammation and injury, and lung tissue was examined histologically for development of pulmonary disease as a function of dose and time. The results showed that DWCNT exposure produced a dose-dependent increase in WLL polymorphonuclear leukocytes (PMN), indicating that DWCNT exposure initiated pulmonary inflammation. DWCNT exposure also produced a dose-dependent rise in lactate dehydrogenase (LDH) activity, as well as albumin levels, in WLL fluid, indicating that DWCNT exposure promoted cytotoxicity as well as decreases in the integrity of the blood-gas barrier in the lung, respectively. In addition, at 7 and 56 d postexposure, the presence of significant alveolitis and fibrosis was noted in mice exposed to 40 mug/mouse DWCNT. In conclusion, this study provides insight into previously uninvestigated pulmonary bioactivity of DWCNT exposure. Data indicate that DWCNT exposure promotes inflammation, injury, and fibrosis in the lung. |
Lung tumor promotion by chromium-containing welding particulate matter in a mouse model
Zeidler-Erdely PC , Meighan TG , Erdely A , Battelli LA , Kashon ML , Keane M , Antonini JM . Part Fibre Toxicol 2013 10 (1) 45 BACKGROUND: Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. METHODS: Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 microg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 microg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. RESULTS: MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 = 1.5 tumors/mouse) and high (14.0 +/- 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 +/- 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. CONCLUSIONS: GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. |
Extrapulmonary transport of MWCNT following inhalation exposure
Mercer RR , Scabilloni JF , Hubbs AF , Wang L , Battelli LA , McKinney W , Castranova V , Porter DW . Part Fibre Toxicol 2013 10 (1) 38 BACKGROUND: Inhalation exposure studies of mice were conducted to determine if multi-walled carbon nanotubes (MWCNT) distribute to the tracheobronchial lymphatics, parietal pleura, respiratory musculature and/or extrapulmonary organs. Male C57BL/6 J mice were exposed in a whole-body inhalation system to a 5 mg/m3 MWCNT aerosol for 5 hours/day for 12 days (4 times/week for 3 weeks, lung burden 28.1 ug/lung). At 1 day and 336 days after the 12 day exposure period, mice were anesthetized and lungs, lymph nodes and extrapulmonary tissues were preserved by whole body vascular perfusion of paraformaldehyde while the lungs were inflated with air. Separate, clean-air control groups were studied at 1 day and 336 days post-exposure. Sirius Red stained sections from lung, tracheobronchial lymph nodes, diaphragm, chest wall, heart, brain, kidney and liver were analyzed. Enhanced darkfield microscopy and morphometric methods were used to detect and count MWCNT in tissue sections. Counts in tissue sections were expressed as number of MWCNT per g of tissue and as a percentage of total lung burden (Mean +/- S.E., N = 8 mice per group). MWCNT burden in tracheobronchial lymph nodes was determined separately based on the volume density in the lymph nodes relative to the volume density in the lungs. Field emission scanning electron microscopy (FESEM) was used to examine MWCNT structure in the various tissues. RESULTS: Tracheobronchial lymph nodes were found to contain 1.08 and 7.34 percent of the lung burden at 1 day and 336 days post-exposure, respectively. Although agglomerates account for approximately 54% of lung burden, only singlet MWCNT were observed in the diaphragm, chest wall, liver, kidney, heart and brain. At one day post exposure, the average length of singlet MWCNT in liver and kidney, was comparable to that of singlet MWCNT in the lungs 8.2 +/- 0.3 versus 7.5 +/- 0.4 um, respectively. On average, there were 15,371 and 109,885 fibers per gram in liver, kidney, heart and brain at 1 day and 336 days post-exposure, respectively. The burden of singlet MWCNT in the lymph nodes, diaphragm, chest wall and extrapulmonary organs at 336 days post-exposure was significantly higher than at 1 day post-exposure. CONCLUSIONS: Inhaled MWCNT, which deposit in the lungs, are transported to the parietal pleura, the respiratory musculature, liver, kidney, heart and brain in a singlet form and accumulate with time following exposure. The tracheobronchial lymph nodes contain high levels of MWCNT following exposure and further accumulate over nearly a year to levels that are a significant fraction of the lung burden 1 day post-exposure. |
Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes
Mercer RR , Scabilloni JF , Hubbs AF , Battelli LA , McKinney W , Friend S , Wolfarth MG , Andrew M , Castranova V , Porter DW . Part Fibre Toxicol 2013 10 (1) 33 BACKGROUND: Prior studies have demonstrated a rapid an progressive acute phase response to bolus aspiration of multi-walled carbon nanotubes (MWCNTs). In this study we sought to test the hypothesis that inhalation exposure to MWCNT produces a fibrotic response and that the response is chronically persistent. To address the hypothesis that inhaled MWCNTs cause persistent morphologic changes, male C57BL/6 J mice were exposed in a whole-body inhalation system to a MWCNT aerosol and the fibrotic response in the alveolar region examined at up to 336 days after termination of exposure. METHODS: Inhalation exposure was to a 5 mcg/m3 MWCNT aerosol for 5 hours/day for 12 days (4 times/week for 3 weeks). At the end of inhalation exposures, lungs were either lavaged for analysis of bronchoalveolar lavage (BAL) or preserved by vascular perfusion of fixative while inflated with air at 1, 14, 84, 168 and 336 days post inhalation exposure. Separate, clean-air control groups were also studied. Light microscopy, enhanced darkfield microscopy and field emission electron microscopy (FESEM) of tissue sections were used to analyze the distribution of lung burden following inhalation exposure. Morphometric measurements of Sirius Red staining for fibrillar collagen were used to assess the connective tissue response. Serial section analysis of enhanced darkfield microscope images was used to examine the redistribution of MWCNT fibers within the lungs during the post-exposure period. RESULTS: At day 1 post-exposure 84 +/- 3 and 16 +/- 2 percent of the lung burden (Mean +/- S.E., N = 5) were in the alveolar and airway regions, respectively. Initial distribution within the alveolar region was 56 +/- 5, 7 +/- 4 and 20 +/- 3 percent of lung burden in alveolar macrophages, alveolar airspaces and alveolar tissue, respectively. Clearance reduced the alveolar macrophage burden of MWCNTs by 35 percent between 1 and 168 days post-exposure, while the content of MWCNTs in the alveolar tissue increased by 63 percent. Large MWCNT structures containing greater than 4 fibers were 53.6 percent of the initial lung burden and accounted for the majority of the decline with clearance, while lung burden of singlet MWCNT was essentially unchanged. The mean linear intercept of alveolar airspace, a measure of the expansion of the lungs, was not significantly different between groups. Pulmonary inflammation and damage, measured as the number of polymorphnuclear leukocytes (PMNs) or lactate dehydrogenase activity (LDH) and albumin in BAL, increased rapidly (1 day post) after inhalation of MWCNTs and declined slowly with time post-exposure. The fibrillar collagen in the alveolar region of MWCNT-exposed mice demonstrated a progressive increase in thickness over time (0.17 +/- 0.02, 0.22 +/-0.02, 0.26 +/- 0.03, 0.25 +/- 0.02 and 0.29 +/- 0.01 microns for 1, 14, 84, 168 and 336 days post-exposure) and was significantly different from clean-air controls (0.16 +/- 0.02) at 84 and (0.15 +/- 0.02) at 336 days post-exposure. CONCLUSIONS: Despite the relatively low fraction of the lung burden being delivered to the alveolar tissue, the average thickness of connective tissue in the alveolar region increased by 70% in the 336 days after inhalation exposure. These results demonstrate that inhaled MWCNTs deposit and are retained within the alveolar tissue where they produce a progressive and persistent fibrotic response up to 336 days post-exposure. |
Diacetyl increases sensory innervation and substance P production in rat trachea
Goravanahally MP , Hubbs AF , Fedan JS , Kashon ML , Battelli LA , Mercer RR , Goldsmith WT , Jackson MC , Cumpston A , Frazer DG , Dey RD . Toxicol Pathol 2013 42 (3) 582-90 Inhalation of diacetyl, a butter flavoring, causes airway responses potentially mediated by sensory nerves. This study examines diacetyl-induced changes in sensory nerves of tracheal epithelium. Rats (n = 6/group) inhaled 0-, 25-, 249-, or 346-ppm diacetyl for 6 hr. Tracheas and vagal ganglia were removed 1-day postexposure and labeled for substance P (SP) or protein gene product 9.5 (PGP9.5). Vagal ganglia neurons projecting to airway epithelium were identified by axonal transport of fluorescent microspheres intratracheally instilled 14 days before diacetyl inhalation. End points were SP and PGP9.5 nerve fiber density (NFD) in tracheal epithelium and SP-positive neurons projecting to the trachea. PGP9.5-immunoreactive NFD decreased in foci with denuded epithelium, suggesting loss of airway sensory innervation. However, in the intact epithelium adjacent to denuded foci, SP-immunoreactive NFD increased from 0.01 +/- 0.002 in controls to 0.05 +/- 0.01 after exposure to 346-ppm diacetyl. In vagal ganglia, SP-positive airway neurons increased from 3.3 +/- 3.0% in controls to 25.5 +/- 6.6% after inhaling 346-ppm diacetyl. Thus, diacetyl inhalation increases SP levels in sensory nerves of airway epithelium. Because SP release in airways promotes inflammation and activation of sensory nerves mediates reflexes, neural changes may contribute to flavorings-related lung disease pathogenesis. |
Nanotechnology: toxicologic pathology
Hubbs AF , Sargent LM , Porter DW , Sager TM , Chen BT , Frazer DG , Castranova V , Sriram K , Nurkiewicz TR , Reynolds SH , Battelli LA , Schwegler-Berry D , McKinney W , Fluharty KL , Mercer RR . Toxicol Pathol 2013 41 (2) 395-409 Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies. |
Respiratory and olfactory cytotoxicity of inhaled 2,3-pentanedione in Sprague-Dawley rats
Hubbs AF , Cumpston AM , Goldsmith WT , Battelli LA , Kashon ML , Jackson MC , Frazer DG , Fedan JS , Goravanahally MP , Castranova V , Kreiss K , Willard PA , Friend S , Schwegler-Berry D , Fluharty KL , Sriram K . Am J Pathol 2012 181 (3) 829-44 Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the alpha-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another alpha-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain. |
Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes
Mercer RR , Hubbs AF , Scabilloni JF , Wang L , Battelli LA , Friend S , Castranova V , Porter DW . Part Fibre Toxicol 2011 8 (1) 21 BACKGROUND: Multi-walled carbon nanotubes (MWCNTs) are new manufactured nanomaterials with a wide spectrum of commercial applications. To address the hypothesis that MWCNTs cause persistent pulmonary pathology, C57BL/6J mice were exposed by pharyngeal aspiration to 10, 20, 40 or 80 mg of MWCNTs (mean dimensions of 3.9 mm x 49 nm) or vehicle. Lungs were preserved at 1, 7, 28 and 56 days post- exposure to determine the potential regions and target cells for impact by MWCNT lung burden. Morphometric measurement of Sirius Red staining was used to assess the connective tissue response. RESULTS: At 56 days post-exposure, 68.7+/-3.9, 7.5+/-1.9 and 22.0+/-5.1 percent (mean+/-SE, N=8) of the MWCNT lung burden were in alveolar macrophages, alveolar tissue and granulomatous lesions, respectively. The subpleural tissues contained 1.6% of the MWCNT lung burden. No MWCNTs were found in the airways at 7, 28 or 56 days after aspiration The connective tissue in the alveolar interstitium demonstrated a progressive increase in thickness over time in the 80 mg exposure group (0.12+/-0.01, 0.12 +/-0.01, 0.16+/-0.01 and 0.19+/-0.01 um for 1, 7, 28 and 56 days post-exposure (mean+/-SE, N=8)). Dose-response determined at 56 days post-exposure for the average thickness of connective tissue in alveolar septa was 0.11+/-0.01, 0.14+/-.02, 0.14 +/-0.01, 0.16+/-0.01 and 0.19+/-0.01 mm (mean+/-SE, N=8) for vehicle, 10, 20, 40 and 80 mg dose groups, respectively. CONCLUSIONS: The distribution of lung burden was predominately within alveolar macrophages with approximately 8% delivery to the alveolar septa, and a smaller but potentially significant burden to the subpleural tissues. Despite the relatively low fraction of the lung burden being delivered to the alveolar tissue, the average thickness of connective tissue in the alveolar septa was increased over vehicle control by 45% in the 40 mg and 73% in the 80 mg exposure groups. The results demonstrate that MWCNTs have the potential to produce a progressive, fibrotic response in the alveolar tissues of the lungs. However, the increases in connective tissue per mg dose of MWCNTs to the interstitium are significantly less than those previously found for single-walled carbon nanotubes (SWCNTs). |
Lung tumor production and tissue metal distribution after exposure to manual metal arc-stainless steel welding fume in A/J and C57BL/6J mice
Zeidler-Erdely PC , Battelli LA , Salmen-Muniz R , Li Z , Erdely A , Kashon ML , Simeonova PP , Antonini JM . J Toxicol Environ Health A 2011 74 (11) 728-36 Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative. |
Short-term inhalation of stainless steel welding fume causes sustained lung toxicity but no tumorigenesis in lung tumor susceptible A/J mice
Zeidler-Erdely PC , Battelli LA , Stone S , Chen BT , Frazer DG , Young SH , Erdely A , Kashon ML , Andrews R , Antonini JM . Inhal Toxicol 2011 23 (2) 112-20 Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at-risk population for development of lung cancer. Our objective was to expose, by inhalation, lung tumor susceptible (A/J) and resistant C57BL/6J (B6) mice to stainless steel (SS) welding fume containing carcinogenic metals and characterize the lung-inflammatory and tumorigenic response. Male mice were exposed to air or gas metal arc (GMA)-SS welding fume at 40 mg/m(3)x3 h/day for 6 and 10 days. At 1, 4, 7, 10, 14, and 28 days after 10 days of exposure, bronchoalveolar lavage (BAL) was done. Lung cytotoxicity, permeability, inflammatory cytokines, and cell differentials were analyzed. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 78 weeks after 6 and 10 days of exposure. Inhalation of GMA-SS fume caused an early, sustained macrophage and lymphocyte response followed by a gradual neutrophil influx and the magnitudes of these differed between the mouse strains. Monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-a (TNF-a) were increased in both strains while the B6 also had increased interleukin-6 (IL-6) protein. BAL measures of cytotoxicity and damage were similar between the strains and significantly increased at all time points. Histopathology and tumorigenesis were unremarkable at 78 weeks. In conclusion, GMA-SS welding fume induced a significant and sustained inflammatory response in both mouse strains with no recovery by 28 days. Under our exposure conditions, GMA-SS exposure resulted in no significant tumor development in A/J mice. |
Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes
Mercer RR , Hubbs AF , Scabilloni JF , Wang L , Battelli LA , Schwegler-Berry D , Castranova V , Porter DW . Part Fibre Toxicol 2010 7 28 BACKGROUND: Multi-walled carbon nanotubes (MWCNT) are new manufactured nanomaterials with a wide spectrum of commercial applications. The durability and fiber-like dimensions (mean length 3.9 mum long x 49 nm diameter) of MWCNT suggest that these fibers may migrate to and have toxicity within the pleural region. To address whether the pleura received a significant and persistent exposure, C57BL/6J mice were exposed by pharyngeal aspiration to 10, 20, 40 and 80 mug MWCNT or vehicle and the distribution of MWCNT penetrations determined at 1, 7, 28 and 56 days after exposure. Following lung fixation and sectioning, morphometric methods were used to determine the distribution of MWCNT and the number of MWCNT fiber penetrations of three barriers: alveolar epithelium (alveolar penetrations), the alveolar epithelium immediately adjacent to the pleura (subpleural tissue), and visceral pleural surface (intrapleural space). RESULTS: At 1 day 18%, 81.6% and 0.6% of the MWCNT lung burden was in the airway, the alveolar, and the subpleural regions, respectively. There was an initial, high density of penetrations into the subpleural tissue and the intrapleural space one day following aspiration which appeared to decrease due to clearance by alveolar macrophages and/or lymphatics by day 7. However, the density of penetrations increased to steady state levels in the subpleural tissue and intrapleural from day 28 - 56. At day 56 approximately 1 in every 400 fiber penetrations was in either the subpleural tissue or intrapleural space. Numerous penetrations into macrophages in the alveolar airspaces throughout the lungs were demonstrated at all times but are not included in the counts presented. CONCLUSIONS: The results document that MWCNT penetrations of alveolar macrophages, the alveolar wall, and visceral pleura are both frequent and sustained. In addition, the findings demonstrate the need to investigate the chronic toxicity of MWCNT at these sites. |
Coal dust alters beta-naphthoflavone-induced aryl hydrocarbon receptor nuclear translocation in alveolar type II cells
Ghanem MM , Battelli LA , Law BF , Castranova V , Kashon ML , Nath J , Hubbs AF . Part Fibre Toxicol 2009 6 21 BACKGROUND: Many polycyclic aromatic hydrocarbons (PAHs) can cause DNA adducts and initiate carcinogenesis. Mixed exposures to coal dust (CD) and PAHs are common in occupational settings. In the CD and PAH-exposed lung, CD increases apoptosis and causes alveolar type II (AT-II) cell hyperplasia but reduces CYP1A1 induction. Inflammation, but not apoptosis, appears etiologically associated with reduced CYP1A1 induction in this mixed exposure model. Many AT-II cells in the CD-exposed lungs have no detectable CYP1A1 induction after PAH exposure. Although AT-II cells are a small subfraction of lung cells, they are believed to be a potential progenitor cell for some lung cancers. Because CYP1A1 is induced via ligand-mediated nuclear translocation of the aryl hydrocarbon receptor (AhR), we investigated the effect of CD on PAH-induced nuclear translocation of AhR in AT-II cells isolated from in vivo-exposed rats. Rats received CD or vehicle (saline) by intratracheal (IT) instillation. Three days before sacrifice, half of the rats in each group started daily intraperitoneal injections of the PAH, beta-naphthoflavone (BNF). RESULTS: Fourteen days after IT CD exposure and 1 day after the last intraperitoneal BNF injection, AhR immunofluorescence indicated that proportional AhR nuclear expression and the percentage of cells with nuclear AhR were significantly increased in rats receiving IT saline and BNF injections compared to vehicle controls. However, in CD-exposed rats, BNF did not significantly alter the nuclear localization or cytosolic expression of AhR compared to rats receiving CD and oil. CONCLUSION: Our findings suggest that during particle and PAH mixed exposures, CD alters the BNF-induced nuclear translocation of AhR in AT-II cells. This provides an explanation for the modification of CYP1A1 induction in these cells. Thus, this study suggests that mechanisms for reduced PAH-induced CYP1A1 activity in the CD exposed lung include not only the effects of inflammation on the lung as a whole, but also reduced PAH-associated nuclear translocation of AhR in an expanded population of AT-II cells. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 04, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure