Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Baron PA[original query] |
---|
Dustiness of fine and nanoscale powders
Evans DE , Turkevich LA , Roettgers CT , Deye GJ , Baron PA . Ann Occup Hyg 2012 57 (2) 261-77 Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3-37.9% and 0.1-31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace. |
Bipolar diffusion charging of high-aspect ratio aerosols
Ku BK , Deye GJ , Kulkarni P , Baron PA . J Electrostat 2011 69 (6) 641-647 Recent studies have raised concerns over applicability of the conventional charging theories to non-spherical particles such as soot aggregates and single-walled carbon nanotube aerosols of complex shape and morphology. It is expected that the role of particle structure and shape on particle diffusion charging characteristics may be significant in the submicron size range for carbon nanotubes (CNTs) and nanofibers (CNFs). In this study, we report experimental data on equilibrium charging characteristics of high-aspect ratio aerosol particles such as CNFs and multi-walled CNTs (MWCNTs) when exposed to a bipolar ion atmosphere. A neutral fraction was measured, i.e., the fraction of particles carrying no electrical charge. A differential mobility analyzer (DMA) was used to classify aerosols, leaving a bipolar radioactive charger to infer the bipolar charging characteristics at different mobility diameters in the submicron size range. The measured neutral fractions for CNF aerosol particles were lower than the corresponding Boltzmann values by 24.4%, 42.0%, and 45.8% for mobility diameters of 400nm, 600nm, and 700nm, respectively, while the neutral fractions for measured aerodynamic diameters of 221nm, 242nm, and 254nm were much lower than those expected by Boltzmann charge distribution, by 43.8%, 63.1%, and 67.3%, respectively. Neutral fractions of spherical particles of polystyrene latex (PSL) and diethylhexyl sebacate (DEHS) particles, measured under identical experimental conditions and procedure, agreed well with the Boltzmann charge distribution. The measured neutral fractions for MWCNT aerosol particles were lower than the corresponding Boltzmann values by 22.3%-25.0% for mobility diameters in the size range from 279nm to 594nm. Charging-equivalent diameters of CNF particles correlated well with either mobility diameter or equal-area diameter, which were found to be larger than their mobility or equal-area diameters by up to a factor of 5 in the size range of 400nm-700nm, while those of MWCNT particles were larger than the corresponding diameters by a factor of 2 in the size range of 279nm-594nm. |
Comparison of air sampling methods for aerosolized spores of B. anthracis Sterne
Estill CF , Baron PA , Beard JK , Hein MJ , Larsen LD , Deye GJ , Rose L , Hodges L . J Occup Environ Hyg 2011 8 (3) 179-86 Bacillus anthracis Sterne spores were aerosolized within a chamber at concentrations ranging from 1x10(3) to 1.7x10(4) spores per cubic meter of air (particles (p)/m(3)) to compare three different sampling methods: Andersen samplers, gelatin filters, and polytetrafluoroethylene (PTFE) membrane filters. Three samples of each type were collected during each of 19 chamber runs. Chamber concentration was determined by an aerodynamic particle sizer (APS) for the size range of 1.114-1.596 mum. Runs were categorized (low, medium, and high) based on tertiles of the APS estimated air concentrations. Measured air concentrations and recovery efficiency [ratio of the measured (colony forming units (CFU)/m(3)) to the APS estimated (particles/m(3)) air concentrations] for the sampling methods were compared using mixed-effects regression models. Limits of detection for each method were estimated based on estimated recovery efficiencies. Mean APS estimated air concentrations were 1600 particles/m(3), 4100 particles/m(3), and 9100 particles/m(3) at the low, medium, and high tertiles, respectively; coefficient of variation (CV) ranged from 25 to 40%. Statistically significant differences were not observed among the three sampling methods. At the high and medium tertiles, estimated correlations of measured air concentration (CFU/m(3)) among samples collected from the same run of the same type were high (0.73 to 0.93). Among samples collected from the same run but of different types, correlations were moderate to high (0.45 to 0.85); however, correlations were somewhat lower at the low tertile (-0.31 to 0.75). Estimated mean recovery efficiencies ranged from 0.22 to 0.25 CFU/particle with total CVs of approximately 84 to 97%. Estimated detection limits ranged from 35 to 39 particles/m(3). These results will enable investigators to conduct environmental sampling, quantify contamination levels, and conduct risk assessments of B. anthracis. |
Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples
Estill CF , Baron PA , Beard JK , Hein MJ , Larsen LD , Rose L , Schaefer FW 3rd , Noble-Wang J , Hodges L , Lindquist HD , Deye GJ , Arduino MJ . Appl Environ Microbiol 2009 75 (13) 4297-306 After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm(2)). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm(2)) or wipe or vacuum (929 cm(2)) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm(2)) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm(2) for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm(2) for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure