Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-30 (of 88 Records) |
Query Trace: Bai Y[original query] |
---|
Corrigendum: Development of a quadruplex PCR amplicon next generation sequencing assay for detection and differentiation of Bartonella spp
Bai Y , Osikowicz LM , Hojgaard A , Eisen RJ . Front Microbiol 2024 15 1360286 [This corrects the article DOI: 10.3389/fmicb.2023.1243471.]. |
Development of a quadruplex PCR amplicon next generation sequencing assay for detection and differentiation of Bartonella spp
Bai Y , Osikowicz LM , Hojgaard A , Eisen RJ . Front Microbiol 2023 14 1243471 The genus Bartonella includes a group of species that are associated with a wide range of mammalian species, including human. It is challenging to detect all Bartonella species using a single molecular target due to its high genetic diversity. To solve this issue, we developed a quadruplex PCR amplicon sequencing assay using next-generation sequencing (NGS) technology for the detection and differentiation of Bartonella species. Our objective was to obtain the specific sequences of a minimum of two of the four target genes as confirmation of the identity of a particular Bartonella species using the assay. Four pairs of primers targeting specific regions on gltA, groEL, rpoB, and ssrA were evaluated for their capability of differentiating Bartonella species individually and collectively by performing singular PCR amplicon sequencing and quadruplex PCR amplicon sequencing. Using the quadruplex PCR amplicon sequencing, 24 Bartonella reference species were tested, all of which were successfully differentiated by at least two targets. Bartonella species were accurately identified from the artificially mixed DNA templates developed to simulate coinfections. The limit of detection was determined to be 1 fg based on testing a series of 10-fold dilutions of DNA from the Bartonella species. Testing of high DNA concentrations of 19 non-Bartonella species showed high specificity with none of the non-Bartonella species misclassified as Bartonella. Finally, the assay was evaluated by testing DNA extracts from field-collected body lice (Pediculus humanus humanus) and Norway rats (Rattus norvegicus): Bartonella quintana was detected and confirmed by three targets in the lice and Bartonella tribocorum was detected and confirmed by two targets in the rats. These results demonstrated that Bartonella species could be accurately and rapidly detected and differentiated into different tissue types using the quadruplex sequencing assay. |
A conceptual framework for nomenclatural stability and validity of medically important fungi: a proposed global consensus guideline for fungal name changes supported by ABP, ASM, CLSI, ECMM, ESCMID-EFISG, EUCAST-AFST, FDLC, IDSA, ISHAM, MMSA, and MSGERC
de Hoog S , Walsh TJ , Ahmed SA , Alastruey-Izquierdo A , Alexander BD , Arendrup MC , Babady E , Bai FY , Balada-Llasat JM , Borman A , Chowdhary A , Clark A , Colgrove RC , Cornely OA , Dingle TC , Dufresne PJ , Fuller J , Gangneux JP , Gibas C , Glasgow H , Gräser Y , Guillot J , Groll AH , Haase G , Hanson K , Harrington A , Hawksworth DL , Hayden RT , Hoenigl M , Hubka V , Johnson K , Kus JV , Li R , Meis JF , Lackner M , Lanternier F , Leal SM Jr , Lee F , Lockhart SR , Luethy P , Martin I , Kwon-Chung KJ , Meyer W , Nguyen MH , Ostrosky-Zeichner L , Palavecino E , Pancholi P , Pappas PG , Procop GW , Redhead SA , Rhoads DD , Riedel S , Stevens B , Sullivan KO , Vergidis P , Roilides E , Seyedmousavi A , Tao L , Vicente VA , Vitale RG , Wang QM , Wengenack NL , Westblade L , Wiederhold N , White L , Wojewoda CM , Zhang SX . J Clin Microbiol 2023 61 (11) e0087323 The rapid pace of name changes of medically important fungi is creating challenges for clinical laboratories and clinicians involved in patient care. We describe two sources of name change which have different drivers, at the species versus the genus level. Some suggestions are made here to reduce the number of name changes. We urge taxonomists to provide diagnostic markers of taxonomic novelties. Given the instability of phylogenetic trees due to variable taxon sampling, we advocate to maintain genera at the largest possible size. Reporting of identified species in complexes or series should where possible comprise both the name of the overarching species and that of the molecular sibling, often cryptic species. Because the use of different names for the same species will be unavoidable for many years to come, an open access online database of the names of all medically important fungi, with proper nomenclatural designation and synonymy, is essential. We further recommend that while taxonomic discovery continues, the adaptation of new name changes by clinical laboratories and clinicians be reviewed routinely by a standing committee for validation and stability over time, with reference to an open access database, wherein reasons for changes are listed in a transparent way. |
No evidence of Bartonella infections in host-seeking Ixodes scapularis and Ixodes pacificus ticks in the United States
Bai Y , McClung KL , Osikowicz LM , Maes S , Eisen RJ . Parasit Vectors 2024 17 (1) 345 BACKGROUND: Bartonella spp. infect a variety of vertebrates throughout the world, with generally high prevalence. Several Bartonella spp. are known to cause diverse clinical manifestations in humans and have been recognized as emerging pathogens. These bacteria are mainly transmitted by blood-sucking arthropods, such as fleas and lice. The role of ticks in the transmission of Bartonella spp. is unclear. METHODS: A recently developed quadruplex polymerase chain reaction (PCR) amplicon next-generation sequencing approach that targets Bartonella-specific fragments on gltA, ssrA, rpoB, and groEL was applied to test host-seeking Ixodes scapularis ticks (n = 1641; consisting of 886 nymphs and 755 adults) collected in 23 states of the eastern half of the United States and Ixodes pacificus ticks (n = 966; all nymphs) collected in California in the western United States for the presence of Bartonella DNA. These species were selected because they are common human biters and serve as vectors of pathogens causing the greatest number of vector-borne diseases in the United States. RESULTS: No Bartonella DNA was detected in any of the ticks tested by any target. CONCLUSIONS: Owing to the lack of Bartonella detection in a large number of host-seeking Ixodes spp. ticks tested across a broad geographical region, our results strongly suggest that I. scapularis and I. pacificus are unlikely to contribute more than minimally, if at all, to the transmission of Bartonella spp. |
Bats are key hosts in the radiation of mammal-associated Bartonella bacteria (preprint)
McKee CD , Bai Y , Webb CT , Kosoy MY . bioRxiv 2020 2020.04.03.024521 Bats are notorious reservoirs of several zoonotic diseases and may be uniquely tolerant of infection among mammals. Broad sampling has revealed the importance of bats in the diversification and spread of viruses and eukaryotes to other animal hosts. Vector-borne bacteria of the genus Bartonella are prevalent and diverse in mammals globally and recent surveys have revealed numerous Bartonella lineages in bats. We assembled a sequence database of Bartonella strains, consisting of nine genetic loci from 209 previously characterized lineages and 121 new cultured strains from bats, and used these data to perform the most comprehensive phylogenetic analysis of Bartonella to date. This analysis included estimation of divergence dates using a molecular clock and ancestral reconstruction of host associations and geography. We estimate that Bartonella began infecting mammals 62 million years ago near the Cretaceous-Paleogene boundary. Additionally, the radiation of particular Bartonella clades correlate strongly to the timing of diversification and biogeography of mammalian hosts. Bats were inferred to be the ancestral hosts of all mammal-associated Bartonella and appear to be responsible for the early geographic expansion of the genus. We conclude that bats have had a deep influence on the evolutionary radiation of Bartonella bacteria and their spread to other mammalian orders. These results support a ‘bat seeding’ hypothesis that could explain similar evolutionary patterns in other mammalian parasite taxa. Application of such phylogenetic tools as we have used to other taxa may reveal the general importance of bats in the ancient diversification of mammalian parasites.Significance statement Discovering the evolutionary history of infectious agents in animals is important for understanding the process of host adaptation and the origins of human diseases. To clarify the evolution of the Bartonella genus, which contains important human pathogens, we performed phylogenetic analysis on a broad diversity of Bartonella strains, including novel strains from bats. Our results indicate that Bartonella clades diversified along with their mammal hosts over millions of years. Bats appear to be especially important in the early radiation and geographic dispersal of Bartonella lineages. These patterns are consistent with research indicating a chiropteran origin of important human viruses and eukaryotic parasites, suggesting that bats may play a unique role as historical sources of infections to other hosts. |
A serological assay to detect and differentiate rodent exposure to soft tick and hard tick relapsing fever infections in the United States
Parise CM , Bai Y , Brandt KS , Ford SL , Maes S , Replogle AJ , Kneubehl AR , Lopez JE , Eisen RJ , Hojgaard A . Ticks Tick Borne Dis 2023 14 (4) 102167 Human cases of relapsing fever (RF) in North America are caused primarily by Borrelia hermsii and Borrelia turicatae, which are spread by argasid (soft) ticks, and by Borrelia miyamotoi, which is transmitted by ixodid (hard) ticks. In some regions of the United States, the ranges of the hard and soft tick RF species are known to overlap; in many areas, recorded ranges of RF spirochetes overlap with Lyme disease (LD) group Borrelia spirochetes. Identification of RF clusters or cases detected in unusual geographic localities might prompt public health agencies to investigate environmental exposures, enabling prevention of additional cases through locally targeted mitigation. However, exposure risks and mitigation strategies differ among hard and soft tick RF, prompting a need for additional diagnostic strategies that differentiate hard tick from soft tick RF. We evaluated the ability of new and previously described recombinant antigens in serological assays to differentiate among prior exposures in mice to LD, soft or hard tick RF spirochetes. We extracted whole-cell protein lysates from RF Borrelia cultures and synthesized six recombinant RF antigens (Borrelia immunogenic protein A (BipA) derived from four species of RF Borrelia, glycerophosphodiester phosphodiesterase (GlpQ), and Borrelia miyamotoi membrane antigen A (BmaA)) to detect reactivity in laboratory derived (Peromyscus sp. and Mus sp.) mouse serum infected with RF and LD Borrelia species. Among 44 Borrelia exposed mouse samples tested, all five mice exposed to LD spirochetes were correctly differentiated from the 39 mice exposed to RF Borrelia using the recombinant targets. Of the 39 mice exposed to RF spirochetes, 28 were accurately categorized to species of exposure (71%). Segregation among soft tick RF species (Borrelia hermsii, Borrelia parkeri and Borrelia turicatae) was inadequate (58%) owing to observed cross-reactivity among recombinant BipA protein targets. However, among the 28 samples accurately separated to species, all were accurately assigned to soft tick or hard tick RF type. Although not adequately specific to accurately categorize exposure to soft tick RF species, the recombinant BipA protein targets from soft and hard tick RF species show utility in accurately discriminating mouse exposures to LD or RF Borrelia, and accurately segregate hard tick from soft tick RF Borrelia exposure. |
Perceived Hospital Stress, Severe Acute Respiratory Syndrome Coronavirus 2 Activity, and Care Process Temporal Variance During the COVID-19 Pandemic.
Anesi GL , Andrews A , Bai HJ , Bhatraju PK , Brett-Major DM , Broadhurst MJ , Campbell ES , Cobb JP , Gonzalez M , Homami S , Hypes CD , Irwin A , Kratochvil CJ , Krolikowski K , Kumar VK , Landsittel DP , Lee RA , Liebler JM , Lutrick K , Marts LT , Mosier JM , Mukherjee V , Postelnicu R , Rodina V , Segal LN , Sevransky JE , Spainhour C , Srivastava A , Uyeki TM , Wurfel MM , Wyles D , Evans L . Crit Care Med 2023 51 (4) 445-459 OBJECTIVES: The COVID-19 pandemic threatened standard hospital operations. We sought to understand how this stress was perceived and manifested within individual hospitals and in relation to local viral activity. DESIGN: Prospective weekly hospital stress survey, November 2020-June 2022. SETTING: Society of Critical Care Medicine's Discovery Severe Acute Respiratory Infection-Preparedness multicenter cohort study. SUBJECTS: Thirteen hospitals across seven U.S. health systems. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We analyzed 839 hospital-weeks of data over 85 pandemic weeks and five viral surges. Perceived overall hospital, ICU, and emergency department (ED) stress due to severe acute respiratory infection patients during the pandemic were reported by a mean of 43% (sd, 36%), 32% (30%), and 14% (22%) of hospitals per week, respectively, and perceived care deviations in a mean of 36% (33%). Overall hospital stress was highly correlated with ICU stress (ρ = 0.82; p < 0.0001) but only moderately correlated with ED stress (ρ = 0.52; p < 0.0001). A county increase in 10 severe acute respiratory syndrome coronavirus 2 cases per 100,000 residents was associated with an increase in the odds of overall hospital, ICU, and ED stress by 9% (95% CI, 5-12%), 7% (3-10%), and 4% (2-6%), respectively. During the Delta variant surge, overall hospital stress persisted for a median of 11.5 weeks (interquartile range, 9-14 wk) after local case peak. ICU stress had a similar pattern of resolution (median 11 wk [6-14 wk] after local case peak; p = 0.59) while the resolution of ED stress (median 6 wk [5-6 wk] after local case peak; p = 0.003) was earlier. There was a similar but attenuated pattern during the Omicron BA.1 subvariant surge. CONCLUSIONS: During the COVID-19 pandemic, perceived care deviations were common and potentially avoidable patient harm was rare. Perceived hospital stress persisted for weeks after surges peaked. |
Mild and asymptomatic influenza B virus infection among unvaccinated pregnant persons: Implication for effectiveness of non-pharmaceutical intervention and vaccination to prevent influenza
Chen L , Levine MZ , Zhou S , Bai T , Pang Y , Bao L , Tan Y , Cui P , Zhang R , Millman AJ , Greene CM , Zhang Z , Wang Y , Zhang J . Vaccine 2023 41 (3) 694-701 BACKGROUND: We estimated symptomatic and asymptomatic influenza infection frequency in community-dwelling unvaccinated pregnant persons to inform risk communication. METHODS: We collected residue sera from multiple antenatal-care blood draws during October 2016-April 2017. We determined influenza infection as seroconversion with ≥ 4-fold rise in antibody titers between any two serum samples by improved hemagglutinin-inhibition assay including ether-treated B antigens. The serology data were linked to the results of nuclei acid testing (rRT-PCR) based on acute respiratory illness (ARI) surveillance. RESULTS: Among all participants, 43 %(602/1384) demonstrated serology and/or rRT-PCR evidenced infection, and 44 %(265/602) of all infections were asymptomatic. ARI-associated rRT-PCR testing identified only 10 %(61/602) of total infections. Only 1 %(5/420) of the B Victoria cases reported ARI and had a rRT-PCR positive result, compared with 33 %(54/165) of the H3N2 cases. Among influenza ARI cases with multiple serum samples, 19 %(11/58) had seroconversion to a different subtype prior to the illness. CONCLUSIONS: The incidence of influenza B infection in unvaccinated pregnant persons is under-estimated substantially. Non-pharmaceutical intervention may have suboptimal effectiveness in preventing influenza B transmission due to the less clinical manifestation compared to influenza A. The findings support maternal influenza vaccination to protect pregnant persons and reduce consequent household transmission. |
Influenza A(H7N9) pandemic preparedness: Assessment of the breadth of heterologous antibody responses to emerging viruses from multiple pre-pandemic vaccines and population immunity
Levine MZ , Holiday C , Bai Y , Zhong W , Liu F , Jefferson S , Gross FL , Tzeng WP , Fries L , Smith G , Boutet P , Friel D , Innis BL , Mallett CP , Davis CT , Wentworth DE , York IA , Stevens J , Katz JM , Tumpey T . Vaccines (Basel) 2022 10 (11) Influenza A(H7N9) viruses remain as a high pandemic threat. The continued evolution of the A(H7N9) viruses poses major challenges in pandemic preparedness strategies through vaccination. We assessed the breadth of the heterologous neutralizing antibody responses against the 3rd and 5th wave A(H7N9) viruses using the 1st wave vaccine sera from 4 vaccine groups: 1. inactivated vaccine with 2.8 μg hemagglutinin (HA)/dose + AS03(A); 2. inactivated vaccine with 5.75 μg HA/dose + AS03(A;) 3. inactivated vaccine with 11.5 μg HA/dose + MF59; and 4. recombinant virus like particle (VLP) vaccine with 15 μg HA/dose + ISCOMATRIX™. Vaccine group 1 had the highest antibody responses to the vaccine virus and the 3rd/5th wave drifted viruses. Notably, the relative levels of cross-reactivity to the drifted viruses as measured by the antibody GMT ratios to the 5th wave viruses were similar across all 4 vaccine groups. The 1st wave vaccines induced robust responses to the 3rd and Pearl River Delta lineage 5th wave viruses but lower cross-reactivity to the highly pathogenic 5th wave A(H7N9) virus. The population in the United States was largely immunologically naive to the A(H7N9) HA. Seasonal vaccination induced cross-reactive neuraminidase inhibition and binding antibodies to N9, but minimal cross-reactive antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies to A(H7N9). |
Meningococcal disease in North America: Updates from the Global Meningococcal Initiative.
Asturias EJ , Bai X , Bettinger JA , Borrow R , Castillo DN , Caugant DA , Chacon GC , Dinleyici EC , Aviles GE , Garcia L , Glennie L , Harrison LH , Howie RL , Itsko M , Lucidarme J , Marin JEO , Marjuki H , McNamara LA , Mustapha MM , Robinson JL , Romeu B , Sadarangani M , Sáez-Llorens X , Sáfadi MAP , Stephens DS , Stuart JM , Taha MK , Tsang RSW , Vazquez J , De Wals P . J Infect 2022 85 (6) 611-622 This review summarizes the recent Global Meningococcal Initiative (GMI) regional meeting, which explored meningococcal disease in North America. Invasive meningococcal disease (IMD) cases are documented through both passive and active surveillance networks. IMD appears to be decreasing in many areas, such as the Dominican Republic (2016: 18 cases; 2021: 2 cases) and Panama (2008: 1 case/100,000; 2021: <0.1 cases/100,000); however, there is notable regional and temporal variation. Outbreaks persist in at-risk subpopulations, such as people experiencing homelessness in the US and migrants in Mexico. The recent emergence of β-lactamase-positive and ciprofloxacin-resistant meningococci in the US is a major concern. While vaccination practices vary across North America, vaccine uptake remains relatively high. Monovalent and multivalent conjugate vaccines (which many countries in North America primarily use) can provide herd protection. However, there is no evidence that group B vaccines reduce meningococcal carriage. The coronavirus pandemic illustrates that following public health crises, enhanced surveillance of disease epidemiology and catch-up vaccine schedules is key. Whole genome sequencing is a key epidemiological tool for identifying IMD strain emergence and the evaluation of vaccine strain coverage. The Global Roadmap on Defeating Meningitis by 2030 remains a focus of the GMI. |
A new species of tick, Ixodes (Ixodes) mojavensis (Acari: Ixodidae), from the Amargosa Valley of California.
Backus LH , Foley JE , Hobbs GB , Bai Y , Beati L . Ticks Tick Borne Dis 2022 13 (6) 102020 Ixodes (Ixodes) mojavensis, n. sp. (Acari: Ixodidae), is described from all parasitic stages collected from the endangered vole Microtus californicus scirpensis Bailey, 1900 (Rodentia: Cricetidae), Mus musculus L. 1758 (Rodentia: Muridae), and Reithrodontomys megalotis (Baird; 1857) (Rodentia: Cricetidae) in the Amargosa Valley of California. When first collected in 2014, this tick was tentatively identified as Ixodes minor Neumann, 1902 because the nucleotide similarity between its 16S rDNA sequence and a homologous GenBank sequence from an I. minor from the eastern U.S. was 99.51%. Nevertheless, adults of I. mojavensis differ morphologically from I. minor by hypostomal dentition, absence of a spur on palpal segment I, and punctation patterns; nymphs by the shapes of basis capituli, auriculae, cervical grooves and external files of hypostomal denticles; and larvae by the length of idiosomal setae and hypostomal dentition. DNA sequencing of fragments of 4 different genes, 12S rDNA, 16S rDNA, cytochrome c oxidase subunit I (COI), and intergenic transcribed spacer 2 (ITS2) of I. mojavensis and of closely related species of Ixodes shows that the mitochondrial gene sequences of the new tick species are almost identical to the I. minor homologous genes. Phylogenetically, the two species do not cluster in mutually exclusive monophyletic clades. However, ITS2 sequences of I. mojavensis and I. minor diverge deeply (≥ 5.74% maximum likelihood divergence) and are as different as homologous genes from other recognized species. The discrepancy between the two sets of genes is suggestive of past mitochondrial introgression or incomplete mitochondrial lineage sorting. |
A Novel Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Yersinia pestis.
Bai Y , Rizzo MR , Parise C , Maes S , Eisen RJ . Front Microbiol 2022 13 863142 Rapid detection of Yersinia pestis, the causative agent of plague, is essential during field investigations to enable prompt control measures for prevention of the spread of the disease. Affordable, efficient, reliable, and simple detection assays are extremely useful, particularly in plague-endemic regions with limited resources. We developed a loop-mediated isothermal amplification (LAMP) assay that detects Y. pestis within 30 min by simply incubating at 65°C on a dry bath heater. The assay targeted the caf1A gene that is situated on the pMT1 plasmid using six specific primers. Y. pestis presence is visually detected based on the color change in the reactions. For comparison of the assay performance, a real-time LAMP with fluorescent dye detection was conducted on a real-time PCR instrument using the same six primers. Sensitivity assessment showed that the limit of detection (LOD) was 0.2 and 0.03 pg when performed on the dry bath heater and on the real-time PCR instrument, respectively. The assay was 100% specific, having no cross-reactivity with closely related Yersinia spp. and other bacterial species. We tested the LAMP assay on field-collected fleas and showed that it successfully detected Y. pestis with identical results to that of a previously published pentaplex real-time PCR assay. These findings suggest that the relatively inexpensive and simpler LAMP assay could be used to support field investigations, yielding comparable results to more expensive and complex PCR assays. |
Age-specific effects of vaccine egg-adaptation and immune priming on A(H3N2) antibody responses following influenza vaccination.
Liu F , Gross FL , Jefferson SN , Holiday C , Bai Y , Wang L , Zhou B , Levine MZ . J Clin Invest 2021 131 (8) A(H3N2) Influenza vaccine effectiveness (VE) were low during 2016-2019 seasons and varied by age. We analyzed neutralizing antibody responses to egg- and cell-propagated vaccine and circulating viruses following vaccination in 375 individuals (aged 7 months to 82 years) across all vaccine eligible age groups in 3 influenza seasons. Antibody responses to cell- compared to egg-propagated vaccine viruses were significantly reduced due to egg-adapted changes T160K, D225G, and L194P in the vaccine hemagglutinins. Vaccine egg-adaptation had differential impact on antibody responses across different age groups. Immunologically naive children immunized with egg-adapted vaccines mostly mounted antibodies targeting egg-adapted epitopes, whereas those previously primed with infection produced broader responses even when vaccinated with egg-based vaccines. In elderly, repeated boost of vaccine egg-adapted epitopes significantly reduced antibody responses to the wild type cell-grown viruses. Analysis with reverse genetics viruses suggested that the response to each egg-adapted substitution varied by age. Antibody responses did not differ in male versus female vaccinees. Here, the combination of age-specific responses to vaccine egg-adapted substitutions, diverse host immune priming histories and virus antigenic drift impacted antibody responses following vaccination and may have led to the low and variable VE against A(H3N2) viruses across different age groups. |
Borrelia burgdorferi Sensu Stricto DNA in Field-Collected Haemaphysalis longicornis Ticks, Pennsylvania, United States.
Price KJ , Graham CB , Witmier BJ , Chapman HA , Coder BL , Boyer CN , Foster E , Maes SE , Bai Y , Eisen RJ , Kyle AD . Emerg Infect Dis 2021 27 (2) 608-611 We collected questing Haemaphysalis longicornis ticks from southeastern counties of Pennsylvania, USA. Of 263 ticks tested by PCR for pathogens, 1 adult female was positive for Borrelia burgdorferi sensu stricto, yielding a 0.4% infection rate. Continued monitoring of this invasive tick is essential to determine its public health role. |
Bats are key hosts in the radiation of mammal-associated Bartonella bacteria.
McKee CD , Bai Y , Webb CT , Kosoy MY . Infect Genet Evol 2021 89 104719 Bats are notorious reservoirs of several zoonotic diseases and may be uniquely tolerant of infection among mammals. Broad sampling has revealed the importance of bats in the diversification and spread of viruses and eukaryotes to other animal hosts. Vector-borne bacteria of the genus Bartonella are prevalent and diverse in mammals globally and recent surveys have revealed numerous Bartonella lineages in bats. We assembled a sequence database of Bartonella strains, consisting of nine genetic loci from 209 previously characterized Bartonella lineages and 121 new cultured isolates from bats, and used these data to perform a comprehensive phylogenetic analysis of the Bartonella genus. This analysis included estimation of divergence dates using a molecular clock and ancestral reconstruction of host associations and geography. We estimate that Bartonella began infecting mammals 62 million years ago near the Cretaceous-Paleogene boundary. Additionally, the radiation of particular Bartonella clades correlate strongly to the timing of diversification and biogeography of mammalian hosts. Bats were inferred to be the ancestral hosts of all mammal-associated Bartonella and appear to be responsible for the early geographic expansion of the genus. We conclude that bats have had a deep influence on the evolutionary radiation of Bartonella bacteria and their spread to other mammalian orders. These results support a 'bat seeding' hypothesis that could explain similar evolutionary patterns in other mammalian parasite taxa. Application of such phylogenetic tools as we have used to other taxa may reveal the general importance of bats in the ancient diversification of mammalian parasites. |
Flea presence and abundance are not predictors of Bartonella tribocorum carriage in Norway rats (Rattus norvegicus) from an underserved neighborhood of Vancouver, Canada
Himsworth CG , Byers KA , Whelan T , Bai Y , Kosoy MY . Vector Borne Zoonotic Dis 2020 21 (2) 121-124 Urban Norway rats (Rattus norvegicus) carry pathogenic Bartonella spp. that are transmitted among rats and from rats to people through arthropod vectors, particularly fleas. There is marked temporospatial variation in Bartonella spp. carriage among Norway rats in Vancouver, Canada, and we investigated whether this variation is associated with flea presence or abundance. Bartonella triborocum was isolated from 96/370 (35%) rats and 211 (57%) rats had fleas with an average of one flea per rat. All fleas were identified as Nosopsyllus fasciatus. There was no significant relationship between B. tribocorum carriage and flea presence or abundance, suggesting that, in contrast to other rat-associated zoonoses transmitted by fleas (e.g., Yersinia pestis) flea indices may not be informative for understanding the ecology of Bartonella spp. in rats, particularly for N. fasciatus. |
Pentaplex real-time PCR for differential detection of Yersinia pestis and Y. pseudotuberculosis and application for testing fleas collected during plague epizootics.
Bai Y , Motin V , Enscore RE , Osikowicz L , Rosales Rizzo M , Hojgaard A , Kosoy M , Eisen RJ . Microbiologyopen 2020 9 (10) e1105 Upon acquiring two unique plasmids (pMT1 and pPCP1) and genome rearrangement during the evolution from Yersinia pseudotuberculosis, the plague causative agent Y. pestis is closely related to Y. pseudotuberculosis genetically but became highly virulent. We developed a pentaplex real-time PCR assay that not only detects both Yersinia species but also differentiates Y. pestis strains regarding their plasmid profiles. The five targets used were Y. pestis-specific ypo2088, caf1, and pst located on the chromosome, plasmids pMT1 and pPCP1, respectively; Y. pseudotuberculosis-specific chromosomal gene opgG; and 18S ribosomal RNA gene as an internal control for flea DNA. All targets showed 100% specificity and high sensitivity with limits of detection ranging from 1 fg to 100 fg, with Y. pestis-specific pst as the most sensitive target. Using the assay, Y. pestis strains were differentiated 100% by their known plasmid profiles. Testing Y. pestis and Y. pseudotuberculosis-spiked flea DNA showed there is no interference from flea DNA on the amplification of targeted genes. Finally, we applied the assay for testing 102 fleas collected from prairie dog burrows where prairie dog die-off was reported months before flea collection. All flea DNA was amplified by 18S rRNA; no Y. pseudotuberculosis was detected; one flea was positive for all Y. pestis-specific targets, confirming local Y. pestis transmission. Our results indicated the assay is sensitive and specific for the detection and differentiation of Y. pestis and Y. pseudotuberculosis. The assay can be used in field investigations for the rapid identification of the plague causative agent. |
Association of a province-wide intervention with salt intake and hypertension in Shandong Province, China, 2011-2016
Xu A , Ma J , Guo X , Wang L , Wu J , Zhang J , Bai Y , Xu J , Lu Z , Xu Z , Zhang X , Ding G , Hong Y , Du F , Wu Y , Yan L , Tang J , Cai X , Dong J , Xu C , Ren J , Chen X , Gao C , Zhang B , Yang Q , Moolenaar R , Cai Y , Jackson SL , Xie G , Yu S , Cui J , Wang Z , Zhao L , Ju L , Shen D , Yun S , Liang X , Bi Z , Wang Y . JAMA Intern Med 2020 180 (6) 877-86 IMPORTANCE: High salt intake is associated with hypertension, which is a leading modifiable risk factor for cardiovascular disease. OBJECTIVE: To assess the association of a government-led, multisectoral, and population-based intervention with reduced salt intake and blood pressure in Shandong Province, China. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study used data from the Shandong-Ministry of Health Action on Salt and Hypertension (SMASH) program, a 5-year intervention to reduce sodium consumption in Shandong Province, China. Two representative samples of adults (aged 18-69 years) were surveyed in 2011 (15 350 preintervention participants) and 2016 (16 490 postintervention participants) to examine changes in blood pressure, and knowledge, attitudes, and behaviors related to sodium intake. Urine samples were collected from random subsamples (2024 preintervention participants and 1675 postintervention participants) for measuring sodium and potassium excretion. Data were analyzed from January 20, 2017, to April 9, 2019. INTERVENTIONS: Media campaigns, distribution of scaled salt spoons, promotion of low-sodium products in markets and restaurants, and activities to support household sodium reduction and school-based sodium reduction education. MAIN OUTCOMES AND MEASURES: The primary outcome was change in urinary sodium excretion. Secondary outcomes were changes in potassium excretion, blood pressure, and knowledge, attitudes, and behaviors. Outcomes were adjusted for likely confounders. Means (95% CIs) and percentages were weighted. RESULTS: Among 15 350 participants in 2011, 7683 (50.4%) were men and the mean age was 40.7 years (95% CI, 40.2-41.2 years); among 16 490 participants in 2016, 8077 (50.7%) were men and the mean age was 42.8 years (95% CI, 42.5-43.1 years). Among participants with 24-hour urine samples, 1060 (51.8%) were men and the mean age was 40.9 years (95% CI, 40.5-41.3 years) in 2011 and 836 (50.7%) were men and the mean age was 40.7 years (95% CI, 40.1-41.4 years) in 2016. The 24-hour urinary sodium excretion decreased 25% from 5338 mg per day (95% CI, 5065-5612 mg per day) in 2011 to 4013 mg per day (95% CI, 3837-4190 mg per day) in 2016 (P < .001), and potassium excretion increased 15% from 1607 mg per day (95% CI, 1511-1704 mg per day) to 1850 mg per day (95% CI, 1771-1929 mg per day) (P < .001). Adjusted mean systolic blood pressure among all participants decreased from 131.8 mm Hg (95% CI, 129.8-133.8 mm Hg) to 130.0 mm Hg (95% CI, 127.7-132.4 mm Hg) (P = .04), and diastolic blood pressure decreased from 83.9 mm Hg (95% CI, 82.6-85.1 mm Hg) to 80.8 mm Hg (95% CI, 79.4-82.1 mm Hg) (P < .001). Knowledge, attitudes, and behaviors associated with dietary sodium reduction and hypertension improved significantly. CONCLUSIONS AND RELEVANCE: The findings suggest that a government-led and population-based intervention in Shandong, China, was associated with significant decreases in dietary sodium intake and a modest reduction in blood pressure. The results of SMASH may have implications for sodium reduction and blood pressure control in other regions of China and worldwide. |
Daily mood reactivity to stress during childhood predicts internalizing problems three years later
Bai S , Robles TF , Reynolds BM , Repetti RL . J Abnorm Child Psychol 2020 48 (8) 1063-1075 The mental health toll of common school problems that many children encounter every day is not well understood. This study examined individual differences in mood reactivity to naturally occurring school problems using daily diaries, and assessed their prospective associations with youth mental health, three years later. At baseline, 47 children ages 8 to 13 years described common problems at school and mood on a daily basis, for 8 weeks. Thirty-three youth returned for follow-up three years later at ages 11 to 17 years. Children and parents also completed one-time questionnaires about youth mental health at baseline and follow-up. There were individual differences in the within-person associations between school problems and same-day and next-day mood. A greater tendency to react to school problems with more negative mood or less positive mood on the same day predicted more parent-rated internalizing and externalizing problems and child ratings of depression symptoms three years later, relative to baseline levels of symptoms. Daily diaries can help to identify specific targets of psychosocial interventions in real world settings. |
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Mansouri K , Kleinstreuer N , Abdelaziz AM , Alberga D , Alves VM , Andersson PL , Andrade CH , Bai F , Balabin I , Ballabio D , Benfenati E , Bhhatarai B , Boyer S , Chen J , Consonni V , Farag S , Fourches D , Garcia-Sosa AT , Gramatica P , Grisoni F , Grulke CM , Hong H , Horvath D , Hu X , Huang R , Jeliazkova N , Li J , Li X , Liu H , Manganelli S , Mangiatordi GF , Maran U , Marcou G , Martin T , Muratov E , Nguyen DT , Nicolotti O , Nikolov NG , Norinder U , Papa E , Petitjean M , Piir G , Pogodin P , Poroikov V , Qiao X , Richard AM , Roncaglioni A , Ruiz P , Rupakheti C , Sakkiah S , Sangion A , Schramm KW , Selvaraj C , Shah I , Sild S , Sun L , Taboureau O , Tang Y , Tetko IV , Todeschini R , Tong W , Trisciuzzi D , Tropsha A , Van Den Driessche G , Varnek A , Wang Z , Wedebye EB , Williams AJ , Xie H , Zakharov AV , Zheng Z , Judson RS . Environ Health Perspect 2020 128 (2) 27002 BACKGROUND: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling. OBJECTIVES: In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). METHODS: The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast/Tox21 HTS in vitro assays. RESULTS: The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set. DISCUSSION: The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of approximately 875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment. https://doi.org/10.1289/EHP5580. |
Identification of Bartonella rochalimae in Guinea pigs (Cavia porcellus) and fleas collected from rural Peruvian households
Rizzo MF , Osikowicz L , Caceres AG , LunaCaipo VD , Suarez-Puyen SM , Bai Y , Kosoy M . Am J Trop Med Hyg 2019 101 (6) 1276-1281 In the present study, we tested 391 fleas collected from guinea pigs (Cavia porcellus) (241 Pulex species, 110 Ctenocephalides felis, and 40 Tiamastus cavicola) and 194 fleas collected from human bedding and clothing (142 Pulex species, 43 C. felis, five T. cavicola, and four Ctenocephalides canis) for the presence of Bartonella DNA. We also tested 83 blood spots collected on FTA cards from guinea pigs inhabiting 338 Peruvian households. Bartonella DNA was detected in 81 (20.7%) of 391 guinea pig fleas, in five (2.6%) of 194 human fleas, and in 16 (19.3%) of 83 guinea pig blood spots. Among identified Bartonella species, B. rochalimae was the most prevalent in fleas (89.5%) and the only species found in the blood spots from guinea pigs. Other Bartonella species detected in fleas included B. henselae (3.5%), B. clarridgeiae (2.3%), and an undescribed Bartonella species (4.7%). Our results demonstrated a high prevalence of zoonotic B. rochalimae in households in rural areas where the research was conducted and suggested a potential role of guinea pigs as a reservoir of this bacterium. |
Failure of the Asian longhorned tick, Haemaphysalis longicornis, to serve as an experimental vector of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto
Breuner NE , Ford SL , Hojgaard A , Osikowicz LM , Parise CM , Rosales Rizzo MF , Bai Y , Levin ML , Eisen RJ , Eisen L . Ticks Tick Borne Dis 2019 11 (1) 101311 The invasive, human-biting Asian longhorned tick, Haemaphysalis longicornis, was detected in New Jersey in the eastern United States in August of 2017 and by November of 2018 this tick had been recorded from 45 counties across 9 states, primarily along the Eastern Seaboard. The establishment of H. longicornis in the United States has raised the questions of how commonly it will bite humans and which native pathogens may naturally infect this tick. There also is a need for experimental vector competence studies with native pathogens to determine if H. longicornis can acquire a given pathogen while feeding, pass it transstadially, and then transmit the pathogen in the next life stage. In this experimental study, we evaluated the vector competence of a population of H. longicornis originating from the United States (New York) for a native isolate (B31) of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto (s.s.). In agreement with a previous experimental study on the vector competence of H. longicornis for Borrelia garinii, we found that uninfected H. longicornis larvae could acquire B. burgdorferi s.s. while feeding on infected Mus musculus mice (infection prevalence >50% in freshly fed larvae) but that the infection was lost during the molt to the nymphal stage. None of 520 tested molted nymphs were found to be infected, indicating that transstadial passage of B. burgdorferi s.s. is absent or rare in H. longicornis; and based on the potential error associated with the number of nymphs testing negative in this study, we estimate that the upper 95% limit for infection prevalence was 0.73%. An Ixodes scapularis process control showed both effective acquisition of B. burgdorferi s.s. from infected mice by uninfected larvae and transstadial passage to the nymphal stage (infection prevalence of 80-82% for both freshly fed larvae and molted nymphs). We also observed that although H. longicornis larvae could be compelled to feed on mice by placing the ticks within feeding capsules, attachment and feeding success was minimal (<0.5%) when larvae were placed freely on the fur of the mice. We conclude that H. longicornis is unlikely to contribute more than minimally, if at all, to transmission of Lyme disease spirochetes in the United States. |
Janibacter species with evidence of genomic polymorphism isolated from resected heart valve in a patient with aortic stenosis.
Malania L , Bai Y , Khanipov K , Tsereteli M , Metreveli M , Tsereteli D , Sidamonidze K , Imnadze P , Fofanov Y , Kosoy M . Infect Dis Rep 2019 11 (2) 8132 The authors report isolation and identification of two strains of bacteria belonging to the genus Janibacter from a human patient with aortic stenosis from a rural area of the country of Georgia. The microorganisms were isolated from aortic heart valve. Two isolates with slightly distinct colony morphologies were harvested after sub-culturing from an original agar plate. Preliminary identification of the isolates is based on amplification and sequencing of a fragment of 16SrRNA. Whole genome sequencing was performed using the Illumina MiSeq instrument. Both isolates were identified as undistinguished strains of the genus Janibacter. Characterization of whole genome sequences of each culture has revealed a 15% difference in gene profile between the cultures and confirmed that both strains belong to the genus Janibacter with the closest match to J. terrae. Genomic comparison of cultures of Janibacter obtained from human cases and from environmental sources presents a promising direction for evaluating a role of these bacteria as human pathogens. |
Tropism and infectivity of a seasonal A(H1N1) and a highly pathogenic avian A(H5N1) influenza virus in primary differentiated ferret nasal epithelial cell cultures
Zeng H , Goldsmith CS , Kumar A , Belser JA , Sun X , Pappas C , Brock N , Bai Y , Levine M , Tumpey TM , Maines TR . J Virol 2019 93 (10) Ferrets represent an invaluable animal model to study influenza virus pathogenesis and transmission. To further characterize this model, we developed a differentiated primary ferret nasal epithelial cell (FNEC) culture model for investigation of influenza A virus infection and virus-host interactions. This well-differentiated culture consists of various cell types, a mucociliary clearance system, and tight junctions, representing the nasal ciliated pseudostratified respiratory epithelium. Both alpha2,6-linked and alpha2,3-linked sialic acid (SA) receptors, which preferentially bind the HA of human and avian influenza viruses, respectively, were detected on the apical surface of the culture with different cellular tropism. In accordance with distribution of SA receptors, we observed that a pre-2009 seasonal A(H1N1) virus infected both ciliated and non-ciliated cells, whereas a highly pathogenic avian influenza (HPAI) A(H5N1) virus primarily infected non-ciliated cells. Transmission electron microscopy revealed that virions were released from or associated with the apical membranes of ciliated, non-ciliated, and mucin-secretory goblet cells. Upon infection, the HPAI A(H5N1) virus replicated to titers higher than those of the human A(H1N1) virus at 37 degrees C, however, replication of the A(H5N1) virus was significantly attenuated at 33 degrees C. Furthermore, we found that infection with the A(H5N1) virus induced higher expression of immune mediator genes and resulted in more cell damage/loss when compared with the human A(H1N1) virus. This primary differentiated FNEC culture model, recapitulating the structure of the nasal epithelium, provides a useful model to bridge in vivo and in vitro studies of cellular tropism, infectivity, and pathogenesis of influenza viruses during the initial stages of infection.IMPORTANCE: Although ferrets serve as an important model of influenza virus infection, much remains unknown about virus-host interactions in this species at the cellular level. The development of differentiated primary cultures of ferret nasal epithelial cells is an important step toward understanding cellular tropism and the mechanisms of influenza virus infection and replication in the airway milieu of this model. Using lectin staining and microscopy techniques, we characterized sialic acid receptor distribution and the cellular composition of the culture model. We then evaluated the replication of and immune response to human and avian influenza viruses at relevant physiological temperatures. Our findings offer significant insight into this first line defense against influenza virus infection and provide a model for the evaluation of emerging influenza viruses in a well-controlled in vitro environmental setting. |
Human exposure to novel Bartonella species from contact with fruit bats
Bai Y , Osinubi MOV , Osikowicz L , McKee C , Vora NM , Rizzo MR , Recuenco S , Davis L , Niezgoda M , Ehimiyein AM , Kia GSN , Oyemakinde A , Adeniyi OS , Gbadegesin YH , Saliman OA , Ogunniyi A , Ogunkoya AB , Kosoy MY . Emerg Infect Dis 2018 24 (12) 2317-2323 Twice a year in southwestern Nigeria, during a traditional bat festival, community participants enter designated caves to capture bats, which are then consumed for food or traded. We investigated the presence of Bartonella species in Egyptian fruit bats (Rousettus aegyptiacus) and bat flies (Eucampsipoda africana) from these caves and assessed whether Bartonella infections had occurred in persons from the surrounding communities. Our results indicate that these bats and flies harbor Bartonella strains, which multilocus sequence typing indicated probably represent a novel Bartonella species, proposed as Bartonella rousetti. In serum from 8 of 204 persons, we detected antibodies to B. rousetti without cross-reactivity to other Bartonella species. This work suggests that bat-associated Bartonella strains might be capable of infecting humans. |
DNA microarray-based assessment of virulence potential of Shiga toxin gene-carrying Escherichia coli O104:H7 isolated from feedlot cattle feces.
Shridhar PB , Patel IR , Gangiredla J , Noll LW , Shi X , Bai J , Elkins CA , Strockbine N , Nagaraja TG . PLoS One 2018 13 (4) e0196490 Escherichia coli O104:H4, a hybrid pathotype reported in a large 2011 foodborne outbreak in Germany, has not been detected in cattle feces. However, cattle harbor and shed in the feces other O104 serotypes, particularly O104:H7, which has been associated with sporadic cases of diarrhea in humans. The objective of our study was to assess the virulence potential of Shiga toxin-producing E. coli (STEC) O104:H7 isolated from feces of feedlot cattle using DNA microarray. Six strains of STEC O104:H7 isolated from cattle feces were analyzed using FDA-E. coli Identification (ECID) DNA microarray to determine their virulence profiles and compare them to the human strains (clinical) of O104:H7, STEC O104:H4 (German outbreak strain), and O104:H21 (milk-associated Montana outbreak strain). Scatter plots were generated from the array data to visualize the gene-level differences between bovine and human O104 strains, and Pearson correlation coefficients (r) were determined. Splits tree was generated to analyze relatedness between the strains. All O104:H7 strains, both bovine and human, similar to O104:H4 and O104:H21 outbreak strains were negative for intimin (eae). The bovine strains were positive for Shiga toxin 1 subtype c (stx1c), enterohemolysin (ehxA), tellurite resistance gene (terD), IrgA homolog protein (iha), type 1 fimbriae (fimH), and negative for genes that code for effector proteins of type III secretory system. The six cattle O104 strains were closely related (r = 0.86-0.98) to each other, except for a few differences in phage related and non-annotated genes. One of the human clinical O104:H7 strains (2011C-3665) was more closely related to the bovine O104:H7 strains (r = 0.81-0.85) than the other four human clinical O104:H7 strains (r = 0.75-0.79). Montana outbreak strain (O104:H21) was more closely related to four of the human clinical O104:H7 strains than the bovine O104:H7 strains. None of the bovine E. coli O104 strains carried genes characteristic of E. coli O104:H4 German outbreak strain and unlike other human strains were also negative for Shiga toxin 2. Because cattle E. coli O104:H7 strains possess stx1c and genes that code for enterohemolysin and a variety of adhesins, the serotype has the potential to be a diarrheagenic foodborne pathogen in humans. |
Genetic Analysis of Virulence Potential of Escherichia coli O104 Serotypes Isolated From Cattle Feces Using Whole Genome Sequencing.
Shridhar PB , Patel IR , Gangiredla J , Noll LW , Shi X , Bai J , Elkins CA , Strockbine NA , Nagaraja TG . Front Microbiol 2018 9 (MAR) (341) 341 Escherichia coli O104:H4, a Shiga toxin-producing hybrid pathotype that was implicated in a major foodborne outbreak in Germany in 2011, has not been detected in cattle. However, serotypes of O104, other than O104:H4, have been isolated from cattle feces, with O104:H7 being the most predominant. In this study, we investigated, based on whole genome sequence analyses, the virulence potential of E. coli O104 strains isolated from cattle feces, since cattle are asymptomatic carriers of E. coli O104. The genomes of ten bovine E. coli O104 strains (six O104:H7, one O104:H8, one O104:H12, and two O104:H23) and five O104:H7 isolated from human clinical cases were sequenced. Of all the bovine O104 serotypes (H7, H8, H12, and H23) that were included in the study, only E. coli O104:H7 serotype possessed Shiga toxins. Four of the six bovine O104:H7 strains and one of the five human strains carried stx1c. Three human O104 strains carried stx2, two were of subtype 2a, and one was 2d. Genomes of stx carrying bovine O104:H7 strains were larger than the stx-negative strains of O104:H7 or other serotypes. The genome sizes were proportional to the number of genes carried on the mobile genetic elements (phages, prophages, transposable elements and plasmids). Both bovine and human strains were negative for intimin and other genes associated with the type III secretory system and non-LEE encoded effectors. Plasmid-encoded virulence genes (ehxA, epeA, espP, katP) were also present in bovine and human strains. All O104 strains were negative for antimicrobial resistance genes, except one human strain. Phylogenetic analysis indicated that bovine E. coli O104 strains carrying the same flagellar antigen clustered together and STEC strains clustered separately from non-STEC strains. One of the human O104:H7 strains was phylogenetically closely related to and belonged to the same sequence type (ST-1817) as the bovine O104:H7 STEC strains. This suggests that the bovine feces could be a source of human illness caused by E. coli O104:H7 serotype. Because bovine O104:H7 strains carried virulence genes similar to human clinical strains and one of the human clinical strains was phylogenetically related to bovine strains, the serotype has the potential to be a diarrheagenic pathogen in humans. Copyright © 2018 Shridhar, Patel, Gangiredla, Noll, Shi, Bai, Elkins, Strockbine and Nagaraja. |
Survey of parasitic bacteria in bat bugs, Colorado
McKee CD , Osikowicz LM , Schwedhelm TR , Bai Y , Castle KT , Kosoy MY . J Med Entomol 2018 55 (1) 237-241 Bat bugs (Cimex adjunctus Barber) (Hemiptera: Cimicidae) collected from big brown bats (Eptesicus fuscus Palisot de Beauvoir) in Colorado, United States were assessed for the presence of Bartonella, Brucella, and Yersinia spp. using molecular techniques. No evidence of Brucella or Yersinia infection was found in the 55 specimens collected; however, 4/55 (7.3%) of the specimens were positive for Bartonella DNA. Multi-locus characterization of Bartonella DNA shows that sequences in bat bugs are phylogenetically related to other Bartonella isolates and sequences from European bats. |
Measuring influenza neutralizing antibody responses to A(H3N2) viruses in human sera by microneutralization assays using MDCK-SIAT1 cells
Gross FL , Bai Y , Jefferson S , Holiday C , Levine MZ . J Vis Exp 2017 2017 (129) Neutralizing antibodies against hemagglutinin (HA) of influenza viruses are considered the main immune mechanism that correlates with protection for influenza infections. Microneutralization (MN) assays are often used to measure neutralizing antibody responses in human sera after influenza vaccination or infection. Madine Darby Canine Kidney (MDCK) cells are the commonly used cell substrate for MN assays. However, currently circulating 3C.2a and 3C.3a A(H3N2) influenza viruses have acquired altered receptor binding specificity. The MDCK-SIAT1 cell line with increased α-2,6 sialic galactose moieties on the surface has proven to provide improved infectivity and more faithful replications than conventional MDCK cells for these contemporary A(H3N2) viruses. Here, we describe a MN assay using MDCK-SIAT1 cells that has been optimized to quantify neutralizing antibody titers to these contemporary A(H3N2) viruses. In this protocol, heat inactivated sera containing neutralizing antibodies are first serially diluted, then incubated with 100 TCID50/well of influenza A(H3N2) viruses to allow antibodies in the sera to bind to the viruses. MDCK-SIAT1 cells are then added to the virus-antibody mixture, and incubated for 18 - 20 h at 37 °C, 5% CO2 to allow A(H3N2) viruses to infect MDCK-SIAT1 cells. After overnight incubation, plates are fixed and the amount of virus in each well is quantified by an enzyme-linked immunosorbent assay (ELISA) using anti-influenza A nucleoprotein (NP) monoclonal antibodies. Neutralizing antibody titer is defined as the reciprocal of the highest serum dilution that provides ≥50% inhibition of virus infectivity. © 2017 Journal of Visualized Experiments. |
Comparison of Zoonotic Bacterial Agents in Fleas Collected from Small Mammals or Host-Seeking Fleas from a Ugandan Region Where Plague Is Endemic.
Bai Y , Osikowicz LM , Kosoy MY , Eisen RJ , Atiku LA , Mpanga JT , Boegler KA , Enscore RE , Gage KL . mSphere 2017 2 (6) Fleas (n = 407) were collected from small mammals trapped inside huts and surroundings of homesteads in five villages within the Arua and Zombo districts of Uganda. The most common flea species were Dinopsyllus lypusus (26%) and Xenopsylla cheopis (50%). Off-host fleas (n = 225) were collected inside huts by using Kilonzo flea traps. The majority of the off-host fleas were Ctenocephalides felis (80%). All fleas were examined for the presence of Bartonella spp., Rickettsia spp., and Yersinia spp. Bartonella DNA was detected in 91 fleas, with an overall prevalence of 14%. Bartonella prevalence was significantly higher in rodent or shrew fleas than in off-host fleas (22% versus 1%). The majority of Bartonella-positive fleas were of the species D. lypusus (61%), X. cheopis (20%), and Ctenophthalmus calceatus (14%). Sequencing analysis identified 12 Bartonella genetic variants, 9 of which belonged to the zoonotic pathogen B. elizabethae species complex. Rickettsia DNA was detected in 143 fleas, giving an overall prevalence of 23%, with a significantly higher prevalence in off-host fleas than in rodent or shrew fleas (56% versus 4%). The majority (88%) of Rickettsia-positive fleas were C. felis and were collected from Kilonzo traps, while a small portion (10%) were X. cheopis collected from rodents. Sequencing analysis identified six Rickettsia genogroups that belonged either to zoonotic R. felis or to the closely related "Candidatus Ricksettia asemboensis" and "Candidatus Ricksettia sengalensis." Yersinia DNA was not detected in the fleas tested. These observations suggested that fleas in northwestern Uganda commonly carry the zoonotic agents B. elizabethae and R. felis and potentially play an important role in transmitting these infections to humans. IMPORTANCE Fleas play critical roles in transmitting some infections among animals and from animals to humans. Detection of pathogens in fleas is important to determine human risks for flea-borne diseases and can help guide diagnosis and treatment. Our findings of high prevalence rates of B. elizabethae and R. felis in fleas in the Arua and Zombo districts of Uganda implicate these agents as potential causative agents of undiagnosed febrile illnesses in this area. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure