Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Bagarozzi DAJr[original query] |
---|
Analysis of the initial lot of the CDC 2019-Novel Coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel.
Lee JS , Goldstein JM , Moon JL , Herzegh O , Bagarozzi DAJr , Oberste MS , Hughes H , Bedi K , Gerard D , Cameron B , Benton C , Chida A , Ahmad A , Petway DJJr , Tang X , Sulaiman N , Teklu D , Batra D , Howard D , Sheth M , Kuhnert W , Bialek SR , Hutson CL , Pohl J , Carroll DS . PLoS One 2021 16 (12) e0260487 ![]() ![]() At the start of the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) designed, manufactured, and distributed the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel for SARS-CoV-2 detection. The diagnostic panel targeted three viral nucleocapsid gene loci (N1, N2, and N3 primers and probes) to maximize sensitivity and to provide redundancy for virus detection if mutations occurred. After the first distribution of the diagnostic panel, state public health laboratories reported fluorescent signal in the absence of viral template (false-positive reactivity) for the N3 component and to a lesser extent for N1. This report describes the findings of an internal investigation conducted by the CDC to identify the cause(s) of the N1 and N3 false-positive reactivity. For N1, results demonstrate that contamination with a synthetic template, that occurred while the "bulk" manufactured materials were located in a research lab for quality assessment, was the cause of false reactivity in the first lot. Base pairing between the 3' end of the N3 probe and the 3' end of the N3 reverse primer led to amplification of duplex and larger molecules resulting in false reactivity in the N3 assay component. We conclude that flaws in both assay design and handling of the "bulk" material, caused the problems with the first lot of the 2019-nCoV Real-Time RT-PCR Diagnostic Panel. In addition, within this study, we found that the age of the examined diagnostic panel reagents increases the frequency of false positive results for N3. We discuss these findings in the context of improvements to quality control, quality assurance, and assay validation practices that have since been improved at the CDC. |
Development and Evaluation of a TaqMan Real-Time PCR Assay for the Rapid Detection of Cross-Contamination of RD (Human) and L20B (Mouse) Cell Lines Used in Poliovirus Surveillance.
Ahmad A , Lee JR , Metz JM , Tang X , Lin SC , Bagarozzi DAJr , Petway D , Herzegh O . J Virol Methods 2021 300 114354 ![]() ![]() BACKGROUND: The cross-contamination of cell lines in culture is a persistent problem. Genetically modified L20B (Mouse) and RD (Human Rhabdomyosarcoma) cell lines are commonly used in poliovirus research, surveillance, and diagnostics. Cross-contamination between these cell lines leads to unreproducible results and unreliable surveillance data, negatively affecting public health. The gold standard method for cell authentication is Short Tandem Repeats analysis, which is time-consuming and expensive. The disadvantage of STR is limited detection of interspecies contamination. METHODS: This assay targets the mitochondrial cytochrome c oxidase subunit I (MTCO1) gene, a highly conserved and emergent DNA barcode region for detection of cross-contamination in RD and L20B cell lines. The MagNA Pure Compact instrument and ABI 7500 Fast Dx Real-time PCR systems were used for DNA extraction and to perform real-time PCR respectively. RESULTS: The newly developed assay is very sensitive with a limit of detection of 100 RD cells/1 million L20B/mL. The amplification efficiency and R(2)-value were 102.26% and 0.9969 respectively. We evaluated specificity of the assay with five human and four mouse cell lines, as well as monkey and rat cell lines. The assay showed no cross-reactivity with genomic DNA from human, mouse, rat, or monkey cell lines. The analytical sensitivity was also evaluated by spiking varying amounts of RD cells (0.001% - 10%) into L20B cells. There was no difference in C(T) values when running single-plex or duplex PCR reactions with similar experimental conditions. CONCLUSIONS: We have developed and validated a TaqMan real-time PCR assay, a sensitive method for the detection of cross-contamination of RD and L20B cell lines. |
Comparison of Zika virus inactivation methods for reagent production and disinfection methods
Chida AS , Goldstein JM , Lee J , Tang X , Bedi K , Herzegh O , Moon JL , Petway D , Bagarozzi DAJr , Hughes LJ . J Virol Methods 2020 287 114004 Zika virus (ZIKV) infection remains a public health concern necessitating demand for long-term virus production for diagnostic assays and R&D activities. Inactivated virus constitutes an important component of the Trioplex rRT-PCR assay and serological IgM assay (MAC-ELISA). The aim of our study is to establish standard methods of ZIKV inactivation while maintaining antigenicity and RNA integrity. We tested viral supernatants by four different inactivation methods: 1. Heat inactivation at 56 °C and 60 °C; 2. Gamma-Irradiation; 3. Chemical inactivation by Beta-propiolactone (BPL) and 4. Fast-acting commercial disinfecting agents. Effectivity was measured by cytopathic effect (CPE) and plaque assay. RNA stability and antigenicity were measured by RT-PCR and MAC-ELISA, respectively. Results: Heat inactivation: Low titer samples, incubated at 56 °C for 2 hrs, showed neither CPE or plaques compared to high titer supernatants that required 2.5 hrs. Inactivation occurred at 60 °C for 60 min with all virus titers. Gamma irradiation: Samples irradiated at ≥3 Mrad for low virus concentrations and ≥5Mrad for high virus titer completely inactivated virus. Chemical Inactivation: Neither CPE nor plaques were observed with ≥0.045% BPL inactivation of ZIKV. Disinfectant: Treatment of viral supernatants with Micro-Chem Plus(TM), inactivated virus in 2 min, whereas, Ethanol (70%) and STERIS Coverage® Spray TB inactivated the virus in 5 min. |
A high-throughput and rapid method for accurate identification of emerging multidrug-resistant Candida auris.
Ahmad A , Spencer JE , Lockhart SR , Singleton S , Petway DJ , Bagarozzi DAJr , Herzegh OT . Mycoses 2019 62 (6) 513-518 ![]() ![]() Candida auris is an emerging multidrug-resistant yeast associated with invasive infection in healthcare settings. Recently, C. auris cases in the US have been detected in 11 states with the majority of cases in New York, New Jersey, and Illinois. Rapid and accurate identification of C. auris is critical for patient care and the implementation of public health measures to control the spread of infection. Our aim was to develop and validate a rapid DNA extraction method using the Roche MagNA Pure 96 instrument and a TaqMan real-time PCR assay for reliable, high throughput identification of C. auris. We evaluated 247 patient dermal swab samples previously analyzed by culture/MALDI-TOF. The diagnostic sensitivity and specificity were 93.6% and 97.2%, respectively. The assay was highly reproducible with a detection limit of 1 C. auris CFU/10muL. A ROC curve analysis of the real-time PCR data showed an area of 0.982 under the curve, with a CT cutoff value of </=37.0. The turnaround time from DNA extraction to real-time PCR results was approximately 200 samples/day. In conclusion, we successfully validated a rapid and high throughput method for accurate and reproducible identification of C. auris with a significantly reduced turnaround time compared to culture/MALDI-TOF based methods. This article is protected by copyright. All rights reserved. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure