Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-13 (of 13 Records) |
Query Trace: Azziz-Baumgartner Eduardo[original query] |
---|
Effectiveness of 2023 Southern Hemisphere influenza vaccines against severe influenza-associated illness: pooled estimates from eight countries using the test-negative design
Radhika Radhika , Gharpure Allen C , Regan Annette K , Nogareda Francisco , Cheng Christopher C , George Siobhan St , Huang QSue , Wood Tim , Anglemyer Andrew , Prasert Kriengkrai , Praphasiri Prabda , Davis William W , Pittayawonganon Chakrarat , Ercole Regina , Iturra Analia , de Almeida Walquiria Aparecida Ferreira , de Paula Junior Francisco Jose , Avendano Vigueras Marcela , Olivares Barraza Maria Fernanda , Dominguez Chavely , Penayo Elena , Goni Natalia , Tritten Daiana , Couto Paula , Salas Daniel , Fowlkes Ashley L , Duca Lindsey M , Azziz-Baumgartner Eduardo , Sullivan Sheena G . Lancet Glob Health 2025 13 (2) e203-e211 ![]() ![]() Background: Annual estimates of seasonal influenza vaccine effectiveness can guide global risk communication and vaccination strategies to mitigate influenza-associated illness. We aimed to evaluate vaccine effectiveness in countries using the 2023 southern hemisphere influenza vaccine formulation. |
Decreased influenza activity during the COVID-19 pandemic-United States, Australia, Chile, and South Africa, 2020.
Olsen SJ , Azziz-Baumgartner E , Budd AP , Brammer L , Sullivan S , Pineda RF , Cohen C , Fry AM . Am J Transplant 2020 20 (12) 3681-3685 Transplant recipients are among the groups for whom the updated recommendations for 2020–2021 influenza vaccination should generally be considered essential, notably in the face of the COVID-19 pandemic. |
Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines.
Thompson MG , Burgess JL , Naleway AL , Tyner H , Yoon SK , Meece J , Olsho LEW , Caban-Martinez AJ , Fowlkes AL , Lutrick K , Groom HC , Dunnigan K , Odean MJ , Hegmann K , Stefanski E , Edwards LJ , Schaefer-Solle N , Grant L , Ellingson K , Kuntz JL , Zunie T , Thiese MS , Ivacic L , Wesley MG , Mayo Lamberte J , Sun X , Smith ME , Phillips AL , Groover KD , Yoo YM , Gerald J , Brown RT , Herring MK , Joseph G , Beitel S , Morrill TC , Mak J , Rivers P , Poe BP , Lynch B , Zhou Y , Zhang J , Kelleher A , Li Y , Dickerson M , Hanson E , Guenther K , Tong S , Bateman A , Reisdorf E , Barnes J , Azziz-Baumgartner E , Hunt DR , Arvay ML , Kutty P , Fry AM , Gaglani M . N Engl J Med 2021 385 (4) 320-329 ![]() ![]() BACKGROUND: Information is limited regarding the effectiveness of the two-dose messenger RNA (mRNA) vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) in preventing infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and in attenuating coronavirus disease 2019 (Covid-19) when administered in real-world conditions. METHODS: We conducted a prospective cohort study involving 3975 health care personnel, first responders, and other essential and frontline workers. From December 14, 2020, to April 10, 2021, the participants completed weekly SARS-CoV-2 testing by providing mid-turbinate nasal swabs for qualitative and quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) analysis. The formula for calculating vaccine effectiveness was 100% × (1 - hazard ratio for SARS-CoV-2 infection in vaccinated vs. unvaccinated participants), with adjustments for the propensity to be vaccinated, study site, occupation, and local viral circulation. RESULTS: SARS-CoV-2 was detected in 204 participants (5%), of whom 5 were fully vaccinated (≥14 days after dose 2), 11 partially vaccinated (≥14 days after dose 1 and <14 days after dose 2), and 156 unvaccinated; the 32 participants with indeterminate vaccination status (<14 days after dose 1) were excluded. Adjusted vaccine effectiveness was 91% (95% confidence interval [CI], 76 to 97) with full vaccination and 81% (95% CI, 64 to 90) with partial vaccination. Among participants with SARS-CoV-2 infection, the mean viral RNA load was 40% lower (95% CI, 16 to 57) in partially or fully vaccinated participants than in unvaccinated participants. In addition, the risk of febrile symptoms was 58% lower (relative risk, 0.42; 95% CI, 0.18 to 0.98) and the duration of illness was shorter, with 2.3 fewer days spent sick in bed (95% CI, 0.8 to 3.7). CONCLUSIONS: Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infection when administered in real-world conditions, and the vaccines attenuated the viral RNA load, risk of febrile symptoms, and duration of illness among those who had breakthrough infection despite vaccination. (Funded by the National Center for Immunization and Respiratory Diseases and the Centers for Disease Control and Prevention.). |
Risk factors for illness severity among pregnant women with confirmed SARS-CoV-2 infection - Surveillance for Emerging Threats to Mothers and Babies Network, 22 state, local, and territorial health departments, March 29, 2020 -March 5, 2021.
Galang RR , Newton SM , Woodworth KR , Griffin I , Oduyebo T , Sancken CL , Olsen EO , Aveni K , Wingate H , Shephard H , Fussman C , Alaali ZS , Silcox K , Siebman S , Halai UA , Lopez CD , Lush M , Sokale A , Barton J , Chaudhary I , Patrick PH , Schlosser L , Reynolds B , Gaarenstroom N , Chicchelly S , Read JS , de Wilde L , Mbotha D , Azziz-Baumgartner E , Hall AJ , Tong VT , Ellington S , Gilboa SM . Clin Infect Dis 2021 73 S17-S23 BACKGROUND: Pregnant women with coronavirus disease 2019 (COVID-19) are at increased risk for severe illness compared with nonpregnant women. Data to assess risk factors for illness severity among pregnant women with COVID-19 are limited. This study aimed to determine risk factors associated with COVID-19 illness severity among pregnant women with SARS-CoV-2 infection. METHODS: Pregnant women with SARS-CoV-2 infection confirmed by molecular testing were reported during March 29, 2020-March 5, 2021 through the Surveillance for Emerging Threats to Mothers and Babies Network (SET-NET). Criteria for illness severity (asymptomatic, mild, moderate-to-severe, or critical) were adapted from National Institutes of Health and World Health Organization criteria. Crude and adjusted risk ratios for moderate-to-severe or critical COVID-19 illness were calculated for selected demographic and clinical characteristics. RESULTS: Among 7,950 pregnant women with SARS-CoV-2 infection, moderate-to-severe or critical COVID-19 illness was associated with age 25 years and older, healthcare occupation, pre-pregnancy obesity, chronic lung disease, chronic hypertension, and pregestational diabetes mellitus. Risk of moderate-to-severe or critical illness increased with the number of underlying medical or pregnancy-related conditions. CONCLUSIONS: Older age and having underlying medical conditions were associated with increased risk of moderate-to-severe or critical COVID-19 illness among pregnant women. This information might help pregnant women understand their risk for moderate-to-severe or critical COVID-19 illness and inform targeted public health messaging. |
Seasonal Influenza Prevention and Control Progress in Latin America and the Caribbean in the Context of the Global Influenza Strategy and the COVID-19 Pandemic.
Vicari AS , Olson D , Vilajeliu A , Andrus JK , Ropero AM , Morens DM , Santos IJ , Azziz-Baumgartner E , Berman S . Am J Trop Med Hyg 2021 105 (1) 93-101 Each year in Latin America and the Caribbean, seasonal influenza is associated with an estimated 36,500 respiratory deaths and 400,000 hospitalizations. Since the 2009 influenza A(H1N1) pandemic, the Region has made significant advances in the prevention and control of seasonal influenza, including improved surveillance systems, burden estimates, and vaccination of at-risk groups. The Global Influenza Strategy 2019-2030 provides a framework to strengthen these advances. Against the backdrop of this new framework, the University of Colorado convened in October 2020 its Immunization Advisory Group of Experts to review and discuss current surveillance, prevention, and control strategies for seasonal influenza in Latin America and the Caribbean, also in the context of the COVID-19 pandemic. This review identified five areas for action and made recommendations specific to each area. The Region should continue its efforts to strengthen surveillance and impact evaluations. Existing data on disease burden, seasonality patterns, and vaccination effectiveness should be used to inform decision-making at the country level as well as advocacy efforts for programmatic resources. Regional and country strategic plans should be prepared and include specific targets for 2030. Existing investments in influenza prevention and control, including for immunization programs, should be optimized. Finally, regional partnerships, such as the regional networks for syndromic surveillance and vaccine effectiveness evaluation (SARInet and REVELAC-i), should continue to play a critical role in continuous learning and standardization by sharing experiences and best practices among countries. |
Ancillary benefits of seasonal influenza vaccination in middle-income countries.
Ebama MS , Chu SY , Azziz-Baumgartner E , Lafond KE , McCarron M , Hadler SC , Porter RM , McKinlay M , Bresee J . Vaccine 2021 39 (14) 1892-1896 While seasonal influenza vaccines (SIV) remain the best method to prevent influenza-associated illnesses, implementing SIV programs may benefit countries beyond disease reduction, strengthening health systems and national immunization programs, or conversely, introduce new challenges. Few studies have examined perceived impacts of SIV introduction beyond disease reduction on health systems; understanding such impacts will be particularly salient in the context of COVID-19 vaccine introduction. We collected qualitative data from key informants-Partnership for Influenza Vaccine Introduction (PIVI) contacts in six middle-income PIVI vaccine recipient countries-to understand perceptions of ancillary benefits and challenges from SIV implementation. Respondents reported benefits associated with SIV introduction, including improved attitudes to SIV among risk groups (characterized by increased demand) and perceptions that SIV introduction improved relationships with other ministries and collaboration with mass media. Challenges included sustaining investment in SIV programs, as vaccine supply did not always meet coverage goals, and managing SIV campaigns. |
Enterovirus D68 infection among hospitalized children with severe acute respiratory illness in El Salvador and Panama, 2012-2013.
Biggs HM , Nix WA , Zhang J , Rogers S , Clara W , Jara JH , Gonzalez R , Luciani K , Brizuela YS , Estripeaut D , Castillo JM , De Leon T , Corro M , Vergara O , Rauda R , Chong EG , Watson JT , Azziz-Baumgartner E , Gerber SI , Tong S , Dawood FS . Influenza Other Respir Viruses 2020 15 (2) 181-187 ![]() We assessed EV-D68 epidemiology and phylogenetics among children aged ≤9 years hospitalized with severe acute respiratory illnesses at five sites in Panama and El Salvador during 2012-2013. Respiratory specimens positive for enterovirus or rhinovirus were tested by real-time RT-PCR for EV-D68, and partial VP1 gene sequences were determined. Of 715 enrolled children, 17 from sites in both countries were EV-D68-positive and commonly had a history of asthma or wheezing. Phylogenetically, 15 of 16 sequences fell into Clade B1, and one into Clade A2. The Central American EV-D68s were closely related genetically to contemporaneous strains from North America, South America, and the Caribbean. |
Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status - United States, January 22-October 3, 2020.
Zambrano LD , Ellington S , Strid P , Galang RR , Oduyebo T , Tong VT , Woodworth KR , Nahabedian JF 3rd , Azziz-Baumgartner E , Gilboa SM , Meaney-Delman D . MMWR Morb Mortal Wkly Rep 2020 69 (44) 1641-1647 Studies suggest that pregnant women might be at increased risk for severe illness associated with coronavirus disease 2019 (COVID-19) (1,2). This report provides updated information about symptomatic women of reproductive age (15-44 years) with laboratory-confirmed infection with SARS-CoV-2, the virus that causes COVID-19. During January 22-October 3, CDC received reports through national COVID-19 case surveillance or through the National Notifiable Diseases Surveillance System (NNDSS) of 1,300,938 women aged 15-44 years with laboratory results indicative of acute infection with SARS-CoV-2. Data on pregnancy status were available for 461,825 (35.5%) women with laboratory-confirmed infection, 409,462 (88.7%) of whom were symptomatic. Among symptomatic women, 23,434 (5.7%) were reported to be pregnant. After adjusting for age, race/ethnicity, and underlying medical conditions, pregnant women were significantly more likely than were nonpregnant women to be admitted to an intensive care unit (ICU) (10.5 versus 3.9 per 1,000 cases; adjusted risk ratio [aRR] = 3.0; 95% confidence interval [CI] = 2.6-3.4), receive invasive ventilation (2.9 versus 1.1 per 1,000 cases; aRR = 2.9; 95% CI = 2.2-3.8), receive extracorporeal membrane oxygenation (ECMO) (0.7 versus 0.3 per 1,000 cases; aRR = 2.4; 95% CI = 1.5-4.0), and die (1.5 versus 1.2 per 1,000 cases; aRR = 1.7; 95% CI = 1.2-2.4). Stratifying these analyses by age and race/ethnicity highlighted disparities in risk by subgroup. Although the absolute risks for severe outcomes for women were low, pregnant women were at increased risk for severe COVID-19-associated illness. To reduce the risk for severe illness and death from COVID-19, pregnant women should be counseled about the importance of seeking prompt medical care if they have symptoms and measures to prevent SARS-CoV-2 infection should be strongly emphasized for pregnant women and their families during all medical encounters, including prenatal care visits. Understanding COVID-19-associated risks among pregnant women is important for prevention counseling and clinical care and treatment. |
Decreased Influenza Activity During the COVID-19 Pandemic - United States, Australia, Chile, and South Africa, 2020.
Olsen SJ , Azziz-Baumgartner E , Budd AP , Brammer L , Sullivan S , Pineda RF , Cohen C , Fry AM . MMWR Morb Mortal Wkly Rep 2020 69 (37) 1305-1309 After recognition of widespread community transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), by mid- to late February 2020, indicators of influenza activity began to decline in the Northern Hemisphere. These changes were attributed to both artifactual changes related to declines in routine health seeking for respiratory illness as well as real changes in influenza virus circulation because of widespread implementation of measures to mitigate transmission of SARS-CoV-2. Data from clinical laboratories in the United States indicated a 61% decrease in the number of specimens submitted (from a median of 49,696 per week during September 29, 2019-February 29, 2020, to 19,537 during March 1-May 16, 2020) and a 98% decrease in influenza activity as measured by percentage of submitted specimens testing positive (from a median of 19.34% to 0.33%). Interseasonal (i.e., summer) circulation of influenza in the United States (May 17-August 8, 2020) is currently at historical lows (median = 0.20% tests positive in 2020 versus 2.35% in 2019, 1.04% in 2018, and 2.36% in 2017). Influenza data reported to the World Health Organization's (WHO's) FluNet platform from three Southern Hemisphere countries that serve as robust sentinel sites for influenza from Oceania (Australia), South America (Chile), and Southern Africa (South Africa) showed very low influenza activity during June-August 2020, the months that constitute the typical Southern Hemisphere influenza season. In countries or jurisdictions where extensive community mitigation measures are maintained (e.g., face masks, social distancing, school closures, and teleworking), those locations might have little influenza circulation during the upcoming 2020-21 Northern Hemisphere influenza season. The use of community mitigation measures for the COVID-19 pandemic, plus influenza vaccination, are likely to be effective in reducing the incidence and impact of influenza, and some of these mitigation measures could have a role in preventing influenza in future seasons. However, given the novelty of the COVID-19 pandemic and the uncertainty of continued community mitigation measures, it is important to plan for seasonal influenza circulation in the United States this fall and winter. Influenza vaccination of all persons aged ≥6 months remains the best method for influenza prevention and is especially important this season when SARS-CoV-2 and influenza virus might cocirculate (1). |
Detection of highly pathogenic avian influenza A(H5N6) viruses in waterfowl in Bangladesh.
Yang G , Chowdury S , Hodges E , Rahman MZ , Jang Y , Hossain ME , Jones J , Stark TJ , Di H , Cook PW , Ghosh S , Azziz-Baumgartner E , Barnes JR , Wentworth DE , Kennedy E , Davis CT . Virology 2019 534 36-44 ![]() ![]() Bangladesh has reported repeated outbreaks of highly pathogenic avian influenza (HPAI) A(H5) viruses in poultry since 2007. Because of the large number of live poultry markets (LPM) relative to the population density of poultry throughout the country, these markets can serve as sentinel sites for HPAI A(H5) detection. Through active LPM surveillance during June 2016-June 2017, HPAI A(H5N6) viruses along with 14 other subtypes of influenza A viruses were detected. The HPAI A(H5N6) viruses belonged to clade 2.3.4.4 and were likely introduced into Bangladesh around March 2016. Human infections with influenza clade 2.3.4.4 viruses in Bangladesh have not been identified, but the viruses had several molecular markers associated with potential human infection. Vigilant surveillance at the animal-human interface is essential to identify emerging avian influenza viruses with the potential to threaten public and animal health. |
Avian influenza surveillance in domestic waterfowl and environment of live bird markets in Bangladesh, 2007-2012.
Khan SU , Gurley ES , Gerloff N , Rahman MZ , Simpson N , Rahman M , Haider N , Chowdhury S , Balish A , Zaman RU , Nasreen S , Chandra Das B , Azziz-Baumgartner E , Sturm-Ramirez K , Davis CT , Donis RO , Luby SP . Sci Rep 2018 8 (1) 9396 ![]() ![]() Avian influenza viruses, including highly pathogenic strains, pose severe economic, animal and public health concerns. We implemented live bird market surveillance in Bangladesh to identify the subtypes of avian influenza A viruses in domestic waterfowl and market environments. We collected waterfowl samples monthly from 4 rural sites from 2007 to 2012 and environmental samples from 4 rural and 16 urban sites from 2009 to 2012. Samples were tested through real-time RT-PCR, virus culture, and sequencing to detect and characterize avian influenza A viruses. Among 4,308 waterfowl tested, 191 (4.4%) were positive for avian influenza A virus, including 74 (1.9%) avian influenza A/H5 subtype. The majority (99%, n = 73) of the influenza A/H5-positive samples were from healthy appearing waterfowl. Multiple subtypes, including H1N1, H1N3, H3N2, H3N6, H3N8, H4N1, H4N2, H4N6, H5N1 (clades 2.2.2, 2.3.2.1a, 2.3.4.2), H5N2, H6N1, H7N9, H9N2, H11N2 and H11N3, H11N6 were detected in waterfowl and environmental samples. Environmental samples tested positive for influenza A viruses throughout the year. Avian influenza viruses, including H5N1 and H9N2 subtypes were also identified in backyard and small-scale raised poultry. Live bird markets could be high-risk sites for harboring the viruses and have the potential to infect naive birds and humans exposed to them. |
Strengthening the influenza vaccine virus selection and development process: Report of the 3rd WHO Informal Consultation for Improving Influenza Vaccine Virus Selection held at WHO headquarters, Geneva, Switzerland, 1-3 April 2014.
Ampofo WK , Azziz-Baumgartner E , Bashir U , Cox NJ , Fasce R , Giovanni M , Grohmann G , Huang S , Katz J , Mironenko A , Mokhtari-Azad T , Sasono PM , Rahman M , Sawanpanyalert P , Siqueira M , Waddell AL , Waiboci L , Wood J , Zhang W , Ziegler T . Vaccine 2015 33 (36) 4368-82 ![]() ![]() Despite long-recognized challenges and constraints associated with their updating and manufacture, influenza vaccines remain at the heart of public health preparedness and response efforts against both seasonal and potentially pandemic influenza viruses. Globally coordinated virological and epidemiological surveillance is the foundation of the influenza vaccine virus selection and development process. Although national influenza surveillance and reporting capabilities are being strengthened and expanded, sustaining and building upon recent gains has become a major challenge. Strengthening the vaccine virus selection process additionally requires the continuation of initiatives to improve the timeliness and representativeness of influenza viruses shared by countries for detailed analysis by the WHO Global Influenza Surveillance and Response System (GISRS). Efforts are also continuing at the national, regional, and global levels to better understand the dynamics of influenza transmission in both temperate and tropical regions. Improved understanding of the degree of influenza seasonality in tropical countries of the world should allow for the strengthening of national vaccination policies and use of the most appropriate available vaccines. There remain a number of limitations and difficulties associated with the use of HAI assays for the antigenic characterization and selection of influenza vaccine viruses by WHOCCs. Current approaches to improving the situation include the more-optimal use of HAI and other assays; improved understanding of the data produced by neutralization assays; and increased standardization of serological testing methods. A number of new technologies and associated tools have the potential to revolutionize influenza surveillance and response activities. These include the increasingly routine use of whole genome next-generation sequencing and other high-throughput approaches. Such approaches could not only become key elements in outbreak investigations but could drive a new surveillance paradigm. However, despite the advances made, significant challenges will need to be addressed before next-generation technologies become routine, particularly in low-resource settings. Emerging approaches and techniques such as synthetic genomics, systems genetics, systems biology and mathematical modelling are capable of generating potentially huge volumes of highly complex and diverse datasets. Harnessing the currently theoretical benefits of such bioinformatics ("big data") concepts for the influenza vaccine virus selection and development process will depend upon further advances in data generation, integration, analysis and dissemination. Over the last decade, growing awareness of influenza as an important global public health issue has been coupled to ever-increasing demands from the global community for more-equitable access to effective and affordable influenza vaccines. The current influenza vaccine landscape continues to be dominated by egg-based inactivated and live attenuated vaccines, with a small number of cell-based and recombinant vaccines. Successfully completing each step in the annual influenza vaccine manufacturing cycle will continue to rely upon timely and regular communication between the WHO GISRS, manufacturers and regulatory authorities. While the pipeline of influenza vaccines appears to be moving towards a variety of niche products in the near term, it is apparent that the ultimate aim remains the development of effective "universal" influenza vaccines that offer longer-lasting immunity against a broad range of influenza A subtypes. |
Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh.
Gerloff NA , Khan SU , Balish A , Shanta IS , Simpson N , Berman L , Haider N , Poh MK , Islam A , Gurley E , Hasnat MA , Dey T , Shu B , Emery S , Lindstrom S , Haque A , Klimov A , Villanueva J , Rahman M , Azziz-Baumgartner E , Ziaur Rahman M , Luby SP , Zeidner N , Donis RO , Sturm-Ramirez K , Davis CT . Virology 2014 450-451 297-307 ![]() ![]() In Bangladesh, little is known about the genomic composition and antigenicity of highly pathogenic avian influenza A(H5N1) viruses, their geographic distribution, temporal patterns, or gene flow within the avian host population. Forty highly pathogenic avian influenza A(H5N1) viruses isolated from humans and poultry in Bangladesh between 2008 and 2012 were analyzed by full genome sequencing and antigenic characterization. The analysis included viruses collected from avian hosts and environmental sampling in live bird markets, backyard poultry flocks, outbreak investigations in wild birds or poultry and from three human cases. Phylogenetic analysis indicated that the ancestors of these viruses reassorted (1) with other gene lineages of the same clade, (2) between different clades and (3) with low pathogenicity avian influenza A virus subtypes. Bayesian estimates of the time of most recent common ancestry, combined with geographic information, provided evidence of probable routes and timelines of virus spread into and out of Bangladesh. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure