Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Ansari AJ[original query] |
---|
Proposed priorities for low-dose radiation research and their relevance to the practice of radiology
Mahesh M , Frush DP , Gros S , Dauer L , Barreto I , Ansari AJ . Radiology 2023 309 (2) e222590 Because ionizing radiation is widely used in medical imaging and in military, industry, and commercial applications, programmatic management and advancement in knowledge is needed, especially related to the health effects of low-dose radiation. The U.S. Congress in partnership with the U.S. Department of Energy called on the National Academies of Sciences, Engineering, and Medicine (NASEM) to develop a long-term strategic and prioritized agenda for low-dose radiation research. Low doses were defined as dose amounts less than 100 mGy or low-dose rates less than 5 mGy per hour. The 2022 NASEM report was divided into sections detailing the low-dose radiation exposure and health effects, scientific basis for radiation protection, status of low-dose radiation research, a prioritized radiation research agenda, and essential components of a low-dose radiation research program, including resources needed and recommendations for financial recourse. The purpose of this review is to summarize this report and examine the recommendations to assess how these pertain to the practice of radiology and medicine. |
Patient exposure from radiologic and nuclear medicine procedures in the United States and Worldwide: 2009-2018
Mahesh M , Ansari AJ , Mettler FA Jr . Radiology 2023 307 (1) e221263 The U.S. National Council on Radiation Protection and Measurements (NCRP) conducted a retrospective assessment of the U.S. data, and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) performed a similar worldwide assessment for 2009-2018 (with most data from 2014 to 2017). Using the data from those reports, the frequency of radiologic and nuclear medicine studies, annual collective, and per capita effective dose in the United States for 2016 were compared with worldwide estimates from 2009 to 2018. There were an estimated 691 million radiologic, CT, dental, and nuclear medicine studies performed in the United States in 2016, which represented 16.5% of the 4.2 billion performed worldwide. The United States also accounted for 74 million CT procedures (18% of the world's estimated total), 275 million conventional radiology procedures (11% of the world's total), 8.1 million interventional radiologic procedures (34% of the world's total), 320 million dental radiography procedures (29% of the world's total), and 13.5 million nuclear medicine procedures (34% of the world's total). The U.S. collective effective dose was 717 000 person-sieverts (17.6% of the world's total). The average annual individual effective dose in the United States was 2.2 mSv compared with 0.56 mSv worldwide. The United States accounts for a large and disproportionate share of global medical radiation procedures and collective effective dose, but use of CT has increased more in other countries compared with the United States. |
Patient exposure from radiologic and nuclear medicine procedures in the United States: Procedure volume and effective dose for the period 2006-2016
Mettler FA Jr , Mahesh M , Bhargavan-Chatfield M , Chambers CE , Elee JG , Frush DP , Miller DL , Royal HD , Milano MT , Spelic DC , Ansari AJ , Bolch WE , Guebert GM , Sherrier RH , Smith JM , Vetter RJ . Radiology 2020 295 (2) 192256 Background Comprehensive assessments of the frequency and associated doses from radiologic and nuclear medicine procedures are rarely conducted. The use of these procedures and the population-based radiation dose increased remarkably from 1980 to 2006. Purpose To determine the change in per capita radiation exposure in the United States from 2006 to 2016. Materials and Methods The U.S. National Council on Radiation Protection and Measurements conducted a retrospective assessment for 2016 and compared the results to previously published data for the year 2006. Effective dose values for procedures were obtained from the literature, and frequency data were obtained from commercial, governmental, and professional society data. Results In the United States in 2006, an estimated 377 million diagnostic and interventional radiologic examinations were performed. This value remained essentially the same for 2016 even though the U.S. population had increased by about 24 million people. The number of CT scans performed increased from 67 million to 84 million, but the number of other procedures (eg, diagnostic fluoroscopy) and nuclear medicine procedures decreased from 17 million to 13.5 million. The number of dental radiographic and dental CT examinations performed was estimated to be about 320 million in 2016. Using the tissue-weighting factors from Publication 60 of the International Commission on Radiological Protection, the U.S. annual individual (per capita) effective dose from diagnostic and interventional medical procedures was estimated to have been 2.9 mSv in 2006 and 2.3 mSv in 2016, with the collective doses being 885 000 and 755 000 person-sievert, respectively. Conclusion The trend from 1980 to 2006 of increasing dose from medical radiation has reversed. Estimated 2016 total collective effective dose and radiation dose per capita dose are lower than in 2006. (c) RSNA, 2020 See also the editorial by Einstein in this issue. |
Radiation exposure of workers and volunteers in shelters and community reception centers in the aftermath of a nuclear detonation
Anderson JL , Failla G , Finklea LR , Charp P , Ansari AJ . Health Phys 2019 116 (5) 619-624 After a nuclear detonation, workers and volunteers providing first aid, decontamination, and population monitoring in public shelters and community reception centers will potentially be exposed to radiation from people they are assisting who may be contaminated with radioactive fallout. A state-of-the-art computer-aided design program and radiation transport modeling software were used to estimate external radiation dose to workers in three different exposure scenarios: performing radiation surveys/decontamination, first aid, and triage duties. Calculated dose rates were highest for workers performing radiation surveys due to the relative proximity to the contaminated individual. Estimated cumulative doses were nontrivial but below the occupational dose limit established for normal operations by the Occupational Safety and Health Administration. |
US Centers For Disease Control and Prevention experience in the joint external evaluation process - radiation emergencies technical area
Whitcomb RC Jr , Ansari AJ , Salame-Alfie A , McCurley MC , Buzzell J , Chang A , Jones RL . Radiat Prot Dosimetry 2018 182 (1) 9-13 In 2015-16, the US Department of Health and Human Services led 23 US Government (USG) agencies including the Centers for Disease Control and Prevention (CDC), and more than 120 subject matter experts in conducting an in-depth review of the US core public health capacities and evaluation of the country's compliance with the International Health Regulations using the Joint External Evaluation (JEE) methodology. This two-part process began with a detailed 'self-assessment' followed by a comprehensive independent, external evaluation conducted by 15 foreign assessors. In the Radiation Emergencies Technical Area, on a scale from 1-lowest to 5-highest, the assessors concurred with the USG self-assessed score of 3 in both of the relevant indicators. The report identified five priority actions recommended to improve the USG capacity to handle large-scale radiation emergencies. CDC is working to implement a post-JEE roadmap to address these priority actions in partnership with national and international partners. |
Proposed “Exposure And Symptom Triage” (EAST) tool to assess radiation exposure after a nuclear detonation
Hick JL , Bader JL , Coleman CN , Ansari AJ , Chang A , Salame-Alfie A , Hanfling D , Koerner JF . Disaster Med Public Health Prep 2017 12 (3) 386-395 One of the biggest medical challenges after the detonation of a nuclear device will be implementing a strategy to assess the severity of radiation exposure among survivors and to triage them appropriately. Those found to be at significant risk for radiation injury can be prioritized to receive potentially lifesaving myeloid cytokines and to be evacuated to other communities with intact health care infrastructure prior to the onset of severe complications of bone marrow suppression. Currently, the most efficient and accessible triage method is the use of sequential complete blood counts to assess lymphocyte depletion kinetics that correlate with estimated whole-body dose radiation exposure. However, even this simple test will likely not be available initially on the scale required to assess the at-risk population. Additional variables such as geographic location of exposure, sheltering, and signs and symptoms may be useful for initial sorting. An interdisciplinary working group composed of federal, state, and local public health experts proposes an Exposure And Symptom Triage (EAST) tool combining estimates of exposure from maps with clinical assessments and single lymphocyte counts if available. The proposed tool may help sort survivors efficiently at assembly centers near the damage and fallout zones and enable rapid prioritization for appropriate treatment and transport. |
A public health perspective on the U.S. response to the Fukushima radiological emergency
Whitcomb RC Jr , Ansari AJ , Buzzell JJ , McCurley MC , Miller CW , Smith JM , Evans DL . Health Phys 2015 108 (3) 357-63 On 11 March 2011, northern Japan was struck by first a magnitude 9.0 earthquake off the eastern coast and then by an ensuing tsunami. At the Fukushima Dai-ichi Nuclear Power Plant (NPP), these twin disasters initiated a cascade of events that led to radionuclide releases. Radioactive material from Japan was subsequently transported to locations around the globe, including the U.S. The levels of radioactive material that arrived in the U.S. were never large enough to cause health effects, but the presence of this material in the environment was enough to require a response from the public health community. Events during the response illustrated some U.S. preparedness challenges that previously had been anticipated and others that were newly identified. Some of these challenges include the following: (1) Capacity, including radiation health experts, for monitoring potentially exposed people for radioactive contamination are limited and may not be adequate at the time of a large-scale radiological incident; (2) there is no public health authority to detain people contaminated with radioactive materials; (3) public health and medical capacities for response to radiation emergencies are limited; (4) public health communications regarding radiation emergencies can be improved to enhance public health response; (5) national and international exposure standards for radiation measurements (and units) and protective action guides lack uniformity; (6) access to radiation emergency monitoring data can be limited; and (7) the Strategic National Stockpile may not be currently prepared to meet the public health need for KI in the case of a surge in demand from a large-scale radiation emergency. Members of the public health community can draw on this experience to improve public health preparedness. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure