Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-10 (of 10 Records) |
Query Trace: Andrews RN[original query] |
---|
Manganese fractionation using a sequential extraction method to evaluate welders flux core arc welding exposures in a shipyard, structural steel and custom parts manufacturers
Hanley KW , Andrews RN , Bertke S , Carter T , Navarro K , Ashley K . Gefahrst Reinhalt Luft 2020 80 (5) 185-193 The National Institute for Occupational Safety and Health (NIOSH) has conducted an occupational exposure assessment study of manganese (Mn) in flux core arc welding fume at three facilities. The objective of this study was to evaluate exposures to different Mn fractions using a sequential extraction procedure. Sixty-seven worker-days were monitored for either total or respirable Mn. The samples were analyzed using an experimental method to separate four Mn fractions based on chemical solubility: soluble Mn in a mild ammonium acetate solution; Mn0,2+ in 25% acetic acid; Mn3+,4+ in hydroxylamine hydrochloride in 25% acetic acid; and insoluble Mn fractions in hydrochloric/nitric acid. The full-shift total particle size Mn time-weighted average (TWA) breathing zone concentrations ranged from 0.51 to 43; 2.9 to 850; 1.7 to 620; and 0.56 to 331 gm-3, for the different Mn fractions, respectively. The summation of all the total particulate Mn fractions yielded results that ranged from 16 to 1,530 g m-3. The ranges of respirable size Mn TWA concentrations were 0.27 to 75 for soluble Mn; 1.6 to 690 for Mn0,2+; 1.3 to 740 for Mn3+,4+; 0.52 to 570 for insoluble Mn; and 3.8 to 1,800 gm-3 for Mn (sum of fractions). Total particulate TWA GM concentrations of the Mn(sum) were 56 (GSD = 4.0), 380 (GSD = 2.7), and 176 (GSD = 3.3) gm-3 for the shipyard, structural steel and custom parts facilities. Although most of the workers exposures measured were below the NIOSH Recommended Exposure Limit for Mn (1,000 gm-3), 44 welders exposures exceeded the ACGIH Threshold Limit Values for total Mn (100 gm-3) and 46 exceeded the new respirable Mn TLV (20 gm-3). This study shows that a welding fume exposure control and management program is warranted for Mn, which includes improved exhaust ventilation and may necessitate the use of respiratory protection, especially for welding in enclosed or confined spaces. |
Inhalation of iron-abundant gas metal arc welding-mild steel fume promotes lung tumors in mice
Falcone LM , Erdely A , Kodali V , Salmen R , Battelli LA , Dodd T , McKinney W , Stone S , Donlin M , Leonard HD , Cumpston JL , Cumpston JB , Andrews RN , Kashon ML , Antonini JM , Zeidler-Erdely PC . Toxicology 2018 409 24-32 Welding fumes were reclassified as a Group 1 carcinogen by the International Agency for Research on Cancer in 2017. Gas metal arc welding (GMAW) is a process widely used in industry. Fume generated from GMAW-mild steel (MS) is abundant in iron with some manganese, while GMAW-stainless steel (SS) fume also contains significant amounts of chromium and nickel, known carcinogenic metals. It has been shown that exposure to GMAW-SS fume in A/J mice promotes lung tumors. The objective was to determine if GMAW-MS fume, which lacks known carcinogenic metals, also promotes lung tumors in mice. Male A/J mice received a single intraperitoneal injection of corn oil or the initiator 3-methylcholanthrene (MCA; 10 mug/g) and, one week later, were exposed by whole-body inhalation to GMAW-MS aerosols for 4 hours/day x 4 days/week x 8 weeks at a mean concentration of 34.5 mg/m(3). Lung nodules were enumerated by gross examination at 30 weeks post-initiation. GMAW-MS fume significantly increased lung tumor multiplicity in mice initiated with MCA (21.86 +/- 1.50) compared to MCA/air-exposed mice (8.34 +/- 0.59). Histopathological analysis confirmed these findings and also revealed an absence of inflammation. Bronchoalveolar lavage analysis also indicated a lack of lung inflammation and toxicity after short-term inhalation exposure to GMAW-MS fume. In conclusion, this study demonstrates that inhalation of GMAW-MS fume promotes lung tumors in vivo and aligns with epidemiologic evidence that shows MS welders, despite less exposure to carcinogenic metals, are at an increased risk for lung cancer. |
Inhalation of gas metal arc-stainless steel welding fume promotes lung tumorigenesis in A/J mice
Falcone LM , Erdely A , Meighan TG , Battelli LA , Salmen R , McKinney W , Stone S , Cumpston A , Cumpston J , Andrews RN , Kashon M , Antonini JM , Zeidler-Erdely PC . Arch Toxicol 2017 91 (8) 2953-2962 Epidemiologic studies suggest an increased risk of lung cancer with exposure to welding fumes, but controlled animal studies are needed to support this association. Oropharyngeal aspiration of collected "aged" gas metal arc-stainless steel (GMA-SS) welding fume has been shown by our laboratory to promote lung tumor formation in vivo using a two-stage initiation-promotion model. Our objective in this study was to determine whether inhalation of freshly generated GMA-SS welding fume also acts as a lung tumor promoter in lung tumor-susceptible mice. Male A/J mice received intraperitoneal (IP) injections of corn oil or the chemical initiator 3-methylcholanthrene (MCA; 10 microg/g) and 1 week later were exposed by whole-body inhalation to air or GMA-SS welding aerosols for 4 h/d x 4 d/w x 9 w at a target concentration of 40 mg/m3. Lung nodules were enumerated at 30 weeks post-initiation. GMA-SS fume significantly promoted lung tumor multiplicity in A/J mice initiated with MCA (16.11 +/- 1.18) compared to MCA/air-exposed mice (7.93 +/- 0.82). Histopathological analysis found that the increased number of lung nodules in the MCA/GMA-SS group were hyperplasias and adenomas, which was consistent with developing lung tumorigenesis. Metal deposition analysis in the lung revealed a lower deposited dose, approximately fivefold compared to our previous aspiration study, still elicited a significant lung tumorigenic response. In conclusion, this study demonstrates that inhaling GMA-SS welding fume promotes lung tumorigenesis in vivo which is consistent with the epidemiologic studies that show welders may be at an increased risk for lung cancer. |
Interlaboratory evaluation of cellulosic acid-soluble internal air sampling capsules for multi-element analysis
Andrews RN , Feng HA , Ashley K . J Occup Environ Hyg 2015 13 (1) 1-28 An interlaboratory study was carried out to evaluate the use of acid-soluble cellulosic air sampling capsules for their suitability in the measurement of trace elements in workplace atmospheric samples. These capsules are used as inserts to perform closed-face cassette sample collection for occupational exposure monitoring. The interlaboratory study was performed in accordance with NIOSH guidelines that describe statistical procedures for evaluating measurement accuracy of air monitoring methods. The performance evaluation materials used consisted of cellulose acetate capsules melded to mixed-cellulose ester filters that were dosed with multiple elements from commercial standard aqueous solutions. The cellulosic capsules were spiked with the following 33 elements of interest in workplace air monitoring: Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, In, K, La, Li, Mg, Mn, Mo, Ni, P, Pb, Sb, Se, Sn, Sr, Te, Ti, Tl, V, W, Y, Zn, Zr. The elemental loading levels were certified by an accredited provider of certified reference materials. Triplicates of media blanks and multielement-spiked capsules at three different elemental loadings were sent to each participating laboratory; the elemental loading levels were not revealed to the laboratories. The volunteer participating laboratories were asked to prepare the samples by acid dissolution and to analyze aliquots of extracted samples by inductively coupled plasma atomic emission spectrometry in accordance with NIOSH methods. It was requested that the study participants report their analytical results in units of mug of each target element per internal capsule sample. For the majority of the elements investigated (30 out of 33), the study accuracy estimates obtained satisfied the NIOSH accuracy criterion (A < 25%). This investigation demonstrates the utility of acid-soluble internal sampling capsules for multielement analysis by atomic spectrometry. |
Manganese speciation of laboratory-generated welding fumes
Andrews RN , Keane M , Hanley KW , Feng HA , Ashley K . Anal Methods 2015 7 6403-6410 The objective of this laboratory study was to identify and measure manganese (Mn) fractions in chamber-generated welding fumes (WF) and to evaluate and compare the results from a sequential extraction procedure for Mn fractions with that of an acid digestion procedure for measurement of total, elemental Mn. To prepare Mn-containing particulate matter from representative welding processes, a welding system was operated in short circuit gas metal arc welding (GMAW) mode using both stainless steel (SS) and mild carbon steel (MCS) and also with flux cored arc welding (FCAW) and shielded metal arc welding (SMAW) using MCS. Generated WF samples were collected onto polycarbonate filters before homogenization, weighing and storage in scintillation vials. The extraction procedure consisted of four sequential steps to measure various Mn fractions based upon selective solubility: (1) soluble Mn dissolved in 0.01 M ammonium acetate; (2) Mn(0,ii) dissolved in 25% (v/v) acetic acid; (3) Mn(iii,iv) dissolved in 0.5% (w/v) hydroxylamine hydrochloride in 25% (v/v) acetic acid; and (4) insoluble Mn extracted with concentrated hydrochloric and nitric acids. After sample treatment, the four fractions were analyzed for Mn by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). WF from GMAW and FCAW showed similar distributions of Mn species, with the largest concentrations of Mn detected in the Mn(0,ii) and insoluble Mn fractions. On the other hand, the majority of the Mn content of SMAW fume was detected as Mn(iii,iv). Although the concentration of Mn measured from summation of the four sequential steps was statistically significantly different from that measured from the hot block dissolution method for total Mn, the difference is small enough to be of no practical importance for industrial hygiene air samples, and either method may be used for Mn measurement. The sequential extraction method provides valuable information about the oxidation state of Mn in samples and allows for comparison to results from previous work and from total Mn dissolution methods. |
Use of and occupational exposure to indium in the United States
Hines CJ , Roberts JL , Andrews RN , Jackson MV , Deddens JA . J Occup Environ Hyg 2013 10 (12) 723-33 Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009-2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m(3) for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH REL. Given recent findings of adverse health effects in workers, research is needed to determine if the current REL sufficiently protects workers against indium-related diseases. |
Manganese accumulation in nail clippings as a biomarker of welding fume exposure and neurotoxicity
Sriram K , Lin GX , Jefferson AM , Roberts JR , Andrews RN , Kashon ML , Antonini JM . Toxicology 2011 291 73-82 Occupational exposure to welding fumes (WF) is thought to cause Parkinson's disease (PD)-like neurological dysfunction. An apprehension that WF may accelerate the onset of PD also exists. Identifying reliable biomarkers of exposure and neurotoxicity are therefore critical for biomonitoring and neurological risk characterization of WF exposure. Manganese (Mn) in welding consumables is considered the causative factor for the neurological deficits seen in welders. Hence, we sought to determine if Mn accumulation in blood or nail clippings can be a marker for adverse exposure and neurotoxicity. To model this, rats were exposed by intratracheal instillation to dissolved or suspended fume components collected from gas metal arc-mild steel (GMA-MS) or manual metal arc-hard surfacing (MMA-HS) welding. Trace element analysis revealed selective Mn accumulation in dopaminergic brain areas, striatum (STR) and midbrain (MB), following exposure to the two fumes. This caused dopaminergic abnormality as evidenced by loss of striatal tyrosine hydroxylase (Th; 25-32% decrease) and Parkinson disease (autosomal recessive, early onset) 7 (Park7; 25-46% decrease) proteins. While blood Mn was not detectable, Mn levels in nails strongly correlated with the pattern of Mn accumulation in the striatum (R(2)=0.9386) and midbrain (R(2)=0.9332). Exposure to manganese chloride (MnCl(2)) caused similar Mn accumulation in STR, MB and nail. Our findings suggest that nail Mn has the potential to be a sensitive and reliable biomarker for long-term Mn exposure and associated neurotoxicity. The non-invasive means by which nail clippings can be collected, stored, and transported with relative ease, make it an attractive surrogate for biomonitoring WF exposures in occupational settings. |
Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity
Antonini JM , Keane M , Chen BT , Stone S , Roberts JR , Schwegler-Berry D , Andrews RN , Frazer DG , Sriram K . Nanotoxicology 2011 5 (4) 700-10 The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m(3) (3 h/day x 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile. |
Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats
Antonini JM , Roberts JR , Stone S , Chen BT , Schwegler-Berry D , Chapman R , Zeidler-Erdely PC , Andrews RN , Frazer DG . Arch Toxicol 2010 85 (5) 487-98 Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs. |
Electrochemical and optical behavior of 8-Hydroxypyrene-1,3,6-trisulfonic acid at optically transparent electrodes
Andrews RN , Seliskar CJ , Heineman WR . Electroanalysis 2010 22 (14) 1557-1565 The objective of this work is to elucidate the electrochemical and corresponding optical properties of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using optically transparent electrodes, thereby deducing its usefulness as a model compound for spectroelectrochemical sensor development. Three pH levels were tested to determine optimal solution conditions for optical signal modulation. The electrolysis of HPTS follows an ECE mechanism, presumably resulting in the formation of a dihydroxy/dione derivative, and modulates the optical response at 405 and 460 nm wavelengths for pH 5 solutions. HPTS is a good candidate for spectroelectrochemical sensor research. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure