Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-30 (of 235 Records) |
Query Trace: Alter C[original query] |
---|
Nerve agent exposure and physiological stress alter brain microstructure and immune profiles after inflammatory challenge in a long-term rat model of Gulf War Illness
Cheng CH , Guan Y , Chiplunkar VP , Mortazavi F , Medalla ML , Sullivan K , O'Callaghan JP , Koo BB , Kelly KA , Michalovicz LT . Brain, Behav, Immun - Health 2024 42 Gulf War Illness (GWI) is a disorder experienced by many veterans of the 1991 Gulf War, with symptoms including fatigue, chronic pain, respiratory and memory problems. Exposure to toxic chemicals during the war, such as oil well fire smoke, pesticides, physiological stress, and nerve agents, is thought to have triggered abnormal neuroinflammatory responses that contribute to GWI. Previous studies have examined the acute effects of combined physiological stress and chemical exposures using GWI rodent models and presented findings related to neuroinflammation and changes in diffusion magnetic resonance imaging (MRI) measures, suggesting a neuroimmune basis for GWI. In the current study, using ex vivo MRI, cytokine mRNA expression, and immunohistological analyses of brain tissues, we examined the brain structure and immune function of a chronic rat model of GWI. Our data showed that a combination of long-term corticosterone treatment (to mimic high physiological stress) and diisopropyl fluorophosphate exposure (to mimic sarin exposure) primed the response to subsequent systemic immune challenge with lipopolysaccharide resulting in elevations of multiple cytokine mRNAs, an increased activated glial population, and disrupted brain microstructure in the cingulate cortex and hippocampus compared to control groups. Our findings support the critical role of neuroinflammation, dysregulated glial activation, and their relationship to disrupted brain microstructural integrity in the pathophysiology of GWI and highlight the unique consequences of long-term combined exposures on brain biochemistry and structural connectivity. © 2024 |
High BMI z-scores from different growth references are not comparable: An example from a weight management trial with an anti-obesity medication in pubertal adolescents with obesity
Hales CM , Ogden CL , Freedman DS , Sahu K , Hale PM , Mamadi RK , Kelly AS . Child Obes 2024 Background: The BMI z-score is a standardized measure of weight status and weight change in children and adolescents. BMI z-scores from various growth references are often considered comparable, and differences among them are underappreciated. Methods: This study reanalyzed data from a weight management clinical study of liraglutide in pubertal adolescents with obesity using growth references from CDC 2000, CDC Extended, World Health Organization (WHO), and International Obesity Task Force. Results: BMI z-score treatment differences varied 2-fold from -0.13 (CDC 2000) to -0.26 (WHO) overall and varied almost 4-fold from -0.05 (CDC 2000) to -0.19 (WHO) among adolescents with high baseline BMI z-score. Conclusions: Depending upon the growth reference used, BMI z-score endpoints can produce highly variable treatment estimates and alter interpretations of clinical meaningfulness. BMI z-scores cited without the associated growth reference cannot be accurately interpreted. |
Distinct features of ribonucleotides within genomic DNA in Aicardi-Goutières syndrome ortholog mutants of Saccharomyces cerevisiae
Kundnani DL , Yang T , Gombolay AL , Mukherjee K , Newnam G , Meers C , Verma I , Chhatlani K , Mehta ZH , Mouawad C , Storici F . iScience 2024 27 (6) Ribonucleoside monophosphates (rNMPs) are abundantly found within genomic DNA of cells. The embedded rNMPs alter DNA properties and impact genome stability. Mutations in ribonuclease (RNase) H2, a key enzyme for rNMP removal, are associated with the Aicardi-Goutières syndrome (AGS), a severe neurological disorder. Here, we engineered orthologs of the human RNASEH2A-G37S and RNASEH2C-R69W AGS mutations in yeast Saccharomyces cerevisiae: rnh201-G42S and rnh203-K46W. Using the ribose-seq technique and the Ribose-Map bioinformatics toolkit, we unveiled rNMP abundance, composition, hotspots, and sequence context in these AGS-ortholog mutants. We found a high rNMP presence in the nuclear genome of rnh201-G42S-mutant cells, and an elevated rCMP content in both mutants, reflecting preferential cleavage of RNase H2 at rGMP. We discovered unique rNMP patterns in each mutant, showing differential activity of the AGS mutants on the leading or lagging replication strands. This study guides future research on rNMP characteristics in human genomes with AGS mutations. © 2024 The Authors |
Low-temperature culture enhances production of flavivirus virus-like particles in mammalian cells
Fan YC . Appl Microbiol Biotechnol 2024 108 (1) 242 Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs. |
High-fat Western diet alters crystalline silica-induced airway epithelium ion transport but not airway smooth muscle reactivity
Thompson JA , Kashon ML , McKinney W , Fedan JS . BMC Res Notes 2024 17 (1) 13 OBJECTIVES: Silicosis is an irreversible occupational lung disease resulting from crystalline silica inhalation. Previously, we discovered that Western diet (HFWD)-consumption increases susceptibility to silica-induced pulmonary inflammation and fibrosis. This study investigated the potential of HFWD to alter silica-induced effects on airway epithelial ion transport and smooth muscle reactivity. METHODS: Six-week-old male F344 rats were fed a HFWD or standard rat chow (STD) and exposed to silica (Min-U-Sil 5(®), 15 mg/m(3), 6 h/day, 5 days/week, for 39 d) or filtered air. Experimental endpoints were measured at 0, 4, and 8 weeks post-exposure. Transepithelial potential difference (V(t)), short-circuit current (I(SC)) and transepithelial resistance (R(t)) were measured in tracheal segments and ion transport inhibitors [amiloride, Na(+) channel blocker; NPPB; Cl- channel blocker; ouabain, Na(+), K(+)-pump blocker] identified changes in ion transport pathways. Changes in airway smooth muscle reactivity to methacholine (MCh) were investigated in the isolated perfused trachea preparation. RESULTS: Silica reduced basal I(SC) at 4 weeks and HFWD reduced the I(SC) response to amiloride at 0 week compared to air control. HFWD + silica exposure induced changes in ion transport 0 and 4 weeks after treatment compared to silica or HFWD treatments alone. No effects on airway smooth muscle reactivity to MCh were observed. |
In situ hybridization (RNAscope) detection of bluetongue virus serotypes 10 and 17 in experimentally co-infected culicoides sonorensis
Carpenter M , Benavides Obon A , Kopanke J , Lee J , Reed K , Sherman T , Rodgers C , Stenglein M , McDermott E , Mayo C . Pathogens 2023 12 (10) Bluetongue virus (BTV) is a segmented, double-stranded RNA virus transmitted by Culicoides biting midges. Infection of domestic and wild ruminants with BTV can result in a devastating disease and significant economic losses. As a virus with a segmented genome, reassortment among the BTV serotypes that have co-infected a host may increase genetic diversity, which can alter BTV transmission dynamics and generate epizootic events. The objective of this study was to determine the extent of dissemination and characterize the tropism of BTV serotypes 10 and 17 in co-infected Culicoides sonorensis. Midges were exposed to both BTV serotypes via blood meal and processed for histologic slides 10 days after infection. An in situ hybridization approach was employed using the RNAscope platform to detect the nucleic acid segment 2 of both serotypes. Observations of the mosaic patterns in which serotypes did not often overlap suggest that co-infection at the cellular level may not be abundant with these two serotypes in C. sonorensis. This could be a consequence of superinfection exclusion. Understanding BTV co-infection and its biological consequences will add an important dimension to the modeling of viral evolution and emergence. |
Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets
Haas KM , McGregor MJ , Bouhaddou M , Polacco BJ , Kim EY , Nguyen TT , Newton BW , Urbanowski M , Kim H , Williams MAP , Rezelj VV , Hardy A , Fossati A , Stevenson EJ , Sukerman E , Kim T , Penugonda S , Moreno E , Braberg H , Zhou Y , Metreveli G , Harjai B , Tummino TA , Melnyk JE , Soucheray M , Batra J , Pache L , Martin-Sancho L , Carlson-Stevermer J , Jureka AS , Basler CF , Shokat KM , Shoichet BK , Shriver LP , Johnson JR , Shaw ML , Chanda SK , Roden DM , Carter TC , Kottyan LC , Chisholm RL , Pacheco JA , Smith ME , Schrodi SJ , Albrecht RA , Vignuzzi M , Zuliani-Alvarez L , Swaney DL , Eckhardt M , Wolinsky SM , White KM , Hultquist JF , Kaake RM , García-Sastre A , Krogan NJ . Nat Commun 2023 14 (1) 6030 Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT. |
Does prior exposure to larvicides influence dengue virus susceptibility in Aedes aegypti (Diptera: Culicidae)?
Aldridge RL , Alto BW , Roxanne Connelly C , Okech B , Siegfried B , Eastmond BH , Alomar AA , Linthicum KJ . J Med Entomol 2023 Control of mosquito vector populations is primarily intended to reduce the transmission of pathogens they transmit. Use of chemical controls, such as larvicides, can have unforeseen consequences on adult traits if not applied properly. The consequences of under application of larvicides are little studied, specifically the impacts on pathogen infection and transmission by the vectors that survive exposure to larvicides. We compared vector susceptibility of Aedes aegypti (L.) for dengue virus, serotype 1 (DENV-1) previously exposed as larvae to an LC50 of different classes of insecticides as formulated larvicides. Larval exposure to insect growth regulators (methoprene and pyriproxyfen) significantly increased susceptibility to infection of DENV-1 in Ae. aegypti adults but did not alter disseminated infection or transmission. Larval exposure to temephos, spinosad, and Bti did not increase infection, disseminated infection, or transmission of DENV-1. Our findings describe a previously under observed phenomenon, the latent effects of select larvicides on mosquito vector susceptibility for arboviruses. These data suggest that there are unintended consequences of sublethal exposure to select larvicides that can influence susceptibility of Ae. aegypti to DENV infection, and indicates the need for further investigation of sublethal effects of insecticides on other aspects of mosquito biology, especially those parameters relevant to a mosquitoes ability to transmit arboviruses (life span, biting behavior, extrinsic incubation period). |
Rhesus macaques show increased resistance to repeated SHIV intrarectal exposure following a heterologous regimen of rVSV vector vaccine expressing HIV antigen
Jelinski J , Kowatsch MM , Lafrance MA , Berger A , Pedersen J , Azizi H , Li Y , Scholte F , Gomez A , Hollett N , Le T , Wade M , Fausther-Bovendo H , de La Vega MA , Babuadze G , X A 3rd , Lamarre C , Racine T , Kang CY , Yao XJ , Alter G , Arts E , Fowke KR , Kobinger GP . Emerg Microbes Infect 2023 12 (2) 2251595 ABSTRACTDespite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licensed for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of nonhuman primates (NHPs). No trend was observed between resistance and antibody interactions. Resistance to infection was associated with high proportions of central memory T cell CD69 and CD154 marker upregulation, increased IL-2 production, and a reduced IFN-γ response, offering insight into correlates of protection. |
Associations of urinary biomarkers of phthalates, phenols, parabens, and organophosphate esters with glycemic traits in pregnancy: The Healthy Start Study
Peng MQ , Dabelea D , Adgate JL , Perng W , Calafat AM , Kannan K , Starling AP . Environ Res 2024 119810 BACKGROUND: Certain endocrine-disrupting chemicals (EDCs) are widespread in consumer products and may alter glucose metabolism. However, the impact of EDC exposures on glucose and insulin regulation during pregnancy is incompletely understood, despite potential adverse consequences for maternal and infant health. We estimated associations between 37 urinary biomarkers of EDCs and glucose-insulin traits among pregnant women. METHODS: Seventeen phthalate or phthalate substitute metabolites, six environmental phenols, four parabens, and ten organophosphate ester metabolites were quantified in mid-pregnancy urine from 298 participants in the Healthy Start Study. Fasting blood glucose, insulin, and hemoglobin A1c were assessed concurrently, and Homeostasis Model Assessment 2-Insulin Resistance (HOMA2-IR) was calculated. Gestational diabetes diagnoses and screening results were obtained from medical records for a subset of participants. We estimated associations between each EDC and outcome separately using linear and robust Poisson regression models and analyzed EDC mixture effects. RESULTS: The EDC mixture was positively associated with glucose, insulin, and HOMA2-IR, although overall associations were attenuated after adjustment for maternal BMI. Two mixture approaches identified di(2-ethylhexyl) phthalate (DEHP) metabolites as top contributors to the mixture's positive associations. In single-pollutant models, DEHP metabolites were positively associated with fasting glucose, fasting insulin, and HOMA2-IR even after adjustment for maternal BMI. For example, each interquartile range increase in log(2)-transformed mono(2-ethyl-5-oxohexyl) phthalate was associated with 2.4 mg/dL (95% confidence interval (CI): 1.1, 3.6) higher fasting glucose, 11.8% (95%CI: 3.6, 20.5) higher fasting insulin, and 12.3% (95%CI: 4.2, 21.1) higher HOMA2-IR. Few EDCs were associated with hemoglobin A1c or with a combined outcome of impaired glucose tolerance or gestational diabetes. DISCUSSION: Exposures to phthalates and particularly DEHP during pregnancy are associated with altered glucose-insulin regulation. Disruptions in maternal glucose metabolism during pregnancy may contribute to adverse pregnancy outcomes including gestational diabetes and fetal macrosomia, and associated long-term consequences for maternal and child health. |
Potential pharmacokinetic interactions with concurrent use of herbal medicines and a ritonavir-boosted COVID-19 protease inhibitor in low and middle-income countries
Smith DJ , Bi H , Hamman J , Ma X , Mitchell C , Nyirenda K , Monera-Penduka T , Oketch-Rabah H , Paine MF , Pettit S , Pheiffer W , Van Breemen RB , Embry M . Front Pharmacol 2023 14 1210579 The COVID-19 pandemic sparked the development of novel anti-viral drugs that have shown to be effective in reducing both fatality and hospitalization rates in patients with elevated risk for COVID-19 related morbidity or mortality. Currently, nirmatrelvir/ritonavir (Paxlovid™) fixed-dose combination is recommended by the World Health Organization for treatment of COVID-19. The ritonavir component is an inhibitor of cytochrome P450 (CYP) 3A, which is used in this combination to achieve needed therapeutic concentrations of nirmatrelvir. Because of the critical pharmacokinetic effect of this mechanism of action for Paxlovid™, co-administration with needed medications that inhibit or induce CYP3A is contraindicated, reflecting concern for interactions with the potential to alter the efficacy or safety of co-administered drugs that are also metabolized by CYP3A. Some herbal medicines are known to interact with drug metabolizing enzymes and transporters, including but not limited to inhibition or induction of CYP3A and P-glycoprotein. As access to these COVID-19 medications has increased in low- and middle-income countries (LMICs), understanding the potential for herb-drug interactions within these regions is important. Many studies have evaluated the utility of herbal medicines for COVID-19 treatments, yet information on potential herb-drug interactions involving Paxlovid™, specifically with herbal medicines commonly used in LMICs, is lacking. This review presents data on regionally-relevant herbal medicine use (particularly those promoted as treatments for COVID-19) and mechanism of action data on herbal medicines to highlight the potential for herbal medicine interaction Herb-drug interaction mediated by ritonavir-boosted antiviral protease inhibitors This work highlights potential areas for future experimental studies and data collection, identifies herbal medicines for inclusion in future listings of regionally diverse potential HDIs and underscores areas for LMIC-focused provider-patient communication. This overview is presented to support governments and health protection entities as they prepare for an increase of availability and use of Paxlovid™. |
Antibody responses induced by trivalent inactivated influenza vaccine among pregnant and non-pregnant women in Thailand: a matched cohort study (preprint)
Nakphook S , Patumanond J , Shrestha M , Prasert K , Chittaganpitch M , Mott JA , Praphasiri P . medRxiv 2021 2021.04.07.21255057 Background We compared influenza antibody titers among vaccinated and unvaccinated pregnant and non-pregnant women.Methods During 1st June – 30th September 2018, four groups of cohort participants - vaccinated pregnant, unvaccinated pregnant, vaccinated non-pregnant, and unvaccinated non-pregnant women were selected by matching age, gestational age, and the week of vaccination. Serum antibody titers against each strain of 2018 Southern Hemisphere inactivated trivalent influenza vaccine (IIV3) were assessed by hemagglutination inhibition (HI) assay on Day 0 (pre-vaccination) and Day 28 (one month post-vaccination) serum samples. Geometric mean titer (GMT), GMT ratio (GMR), seroconversion (defined as ≥4 fold increase in HI titer), and seroprotection (i.e. HI titer ≥1:40) were compared across the study groups using multilevel regression analyses, controlling for previous year vaccination from medical records and baseline antibody levels.Results A total of 132 participants were enrolled in the study (33 in each of the four study groups). The baseline GMTs were similar for influenza A(H1N1), A(H3N2), and B vaccine strains among all four groups (all p-values >0.05). After one month, both vaccinated groups had significantly higher GMT, GMR, seroconversion, and seroprotection than their unvaccinated controls (all p-values <0.05). The seroconversion rate was over 60% for any strain among the vaccinated groups, with the highest (88.8%) observed against A(H1N1) in the vaccinated pregnant group. Similarly, at least 75% of the vaccinated participants developed seroprotective antibody levels against all three strains; the highest seroprotection was found against A(H3N2) at 92.6% among vaccinated non-pregnant participants. Pregnant women had similar antibody responses (post-vaccination GMT, GMR, seroconversion, and seroprotection) to non-pregnant women for all three strains of IIV3 (all p>0.05).Conclusions The 2018 seasonal IIV3 was immunogenic against all three vaccine strains and pregnancy did not seem to alter the immune response to IIV3. These findings support the current influenza vaccination recommendations for pregnant women.Competing Interest StatementThe authors have declared no competing interest.Clinical TrialThai Clinical Trials Registry ID: TCTR20201014004Funding StatementThis study was partially supported by the Nakhon Phanom Provincial Hospital Foundation (ref no. NP 0032.202.3/7) secured by KP and SN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The study protocol was reviewed and approved by the Ethical Review Committee of Thammasat University (Ref no. MTU-EC-ES-4-217/60). Approval of local ethics committee of Nakhon Phanom Hospital (No. NP-EC11-No.4/2560) was also received prior to the data collection.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll relevant data are within the paper and the supporting files. |
Modeling cholera transmission and vaccination in a refugee camp (preprint)
Havumaki J , Meza R , Phares CR , Date K , Eisenberg MC . bioRxiv 2019 514406 Background Cholera remains a major public health concern, particularly in refugee camps, which may contend with overcrowding and scarcity of resources. Maela, the largest long-standing refugee camp in Thailand, experienced four cholera outbreaks between 2005 and 2010. In 2013, a cholera vaccine campaign was implemented in the camp. To assist in the evaluation of the campaign, we developed a mathematical model of cholera in Maela.Methodology/Principal Findings We formulated a Susceptible-Infectious-Water-Recovered-based cholera transmission model and estimated parameters using incidence data from 2010. We next evaluated the reduction in cases conferred by several immunization strategies, varying timing, effectiveness, and resources (i.e., vaccine availability). Finally, we generated post-campaign case forecasts, to determine whether a booster campaign was needed. Using parameters from our calibrated model, our analyses suggest that preexposure vaccination can substantially reduce the risk of cholera even when the < 50% of the population is given the full two-dose series. Additionally, the preferred number of doses per person should be considered in the context of one vs. two dose effectiveness and vaccine availability. For reactive vaccination, a trade-off between timing and effectiveness was revealed, indicating that it may be beneficial to give one dose to more people rather than two doses to fewer people, which would incur a delay in administration of the second dose. Forecasting using realistic coverage levels indicated that there was no need for a booster campaign in 2014.Conclusions/Significance Our analyses suggest that vaccination in conjunction with water sanitation and hygiene improvements provides an effective strategy for cholera outbreaks in refugee camps. Effective preexposure vaccination depends on timing and effectiveness. If a camp is facing an ongoing outbreak, delayed distribution of vaccines can substantially alter the effectiveness of reactive vaccination, suggesting that quick distribution of vaccines may be more important than ensuring every individual receives both vaccine doses.Author summary We developed an age-structured Susceptible-Infectious-Water-Recovered (SIWR)-based transmission model to consider different cholera vaccination strategies in Maela, the largest long-standing refugee camp in Thailand. Our model was fit to cholera incidence data from 2010 and was in part parameterized by demographic data collected from the camp. We considered multiple scenarios, including both a theoretical exploration of the effects of variation in timing, effectiveness and supply, as well as the real-world coverage of vaccine in Maela. The preferred number of doses per person and timing of vaccination campaigns should be considered in the context of one vs. two dose effectiveness and logistical constraints. Importantly, our analysis coincided with an actual cholera vaccination campaign in the camp and was used to evaluate the campaign and to help determine that there was no need for a follow-up booster campaign. The setting of our analysis is particularly relevant given the recent worldwide increase in total numbers of refugees. Results from our model highlight the utility of vaccination to prevent cholera. Vaccination campaigns can be combined with more permanent water, sanitation, and hygiene infrastructure improvements to reduce the risk of cholera and other enteric disease epidemics. Overall, this study demonstrates that mathematical modeling can generate useful insights into real-world policy decisions. |
Associations of maternal urinary concentrations of phenols, individually and as a mixture, with serum biomarkers of thyroid function and autoimmunity: Results from the EARTH Study
McGee G , Génard-Walton M , Williams PL , Korevaar TIM , Chavarro JE , Meeker JD , Braun JM , Broeren MA , Ford JB , Calafat AM , Souter I , Hauser R , Mínguez-Alarcón L . Toxics 2023 11 (6) The associations between urinary phenol concentrations and markers of thyroid function and autoimmunity among potentially susceptible subgroups, such as subfertile women, have been understudied, especially when considering chemical mixtures. We evaluated cross-sectional associations of urinary phenol concentrations, individually and as a mixture, with serum markers of thyroid function and autoimmunity. We included 339 women attending a fertility center who provided one spot urine and one blood sample at enrollment (2009-2015). We quantified four phenols in urine using isotope dilution high-performance liquid chromatography-tandem mass spectrometry, and biomarkers of thyroid function (thyroid-stimulating hormone (TSH), free and total thyroxine (fT4, TT4), and triiodothyronine (fT3, TT3)), and autoimmunity (thyroid peroxidase (TPO) and thyroglobulin (Tg) antibodies (Ab)) in serum using electrochemoluminescence assays. We fit linear and additive models to investigate the association between urinary phenols-both individually and as a mixture-and serum thyroid function and autoimmunity, adjusted for confounders. As a sensitivity analysis, we also applied Bayesian Kernel Machine Regression (BKMR) to investigate non-linear and non-additive interactions. Urinary bisphenol A was associated with thyroid function, in particular, fT(3) (mean difference for a 1 log unit increase in concentration: -0.088; 95% CI [-0.151, -0.025]) and TT(3) (-0.066; 95% CI [-0.112, -0.020]). Urinary methylparaben and triclosan were also associated with several thyroid hormones. The overall mixture was negatively associated with serum fT(3) concentrations (mean difference comparing all four mixture components at their 75th vs. 25th percentiles: -0.19, 95% CI [-0.35, -0.03]). We found no evidence of non-linearity or interactions. These results add to the current literature on phenol exposures and thyroid function in women, suggesting that some phenols may alter the thyroid system. |
A novel rat-tail model for studying human finger vibration health effects
Dong RG , Warren C , Xu XS , Wu JZ , Welcome DE , Waugh S , Krajnak K . Proc Inst Mech Eng H 2023 237 (7) 9544119231181246 It has been hypothesized that the biodynamic responses of the human finger tissues to vibration are among the major stimuli that cause vibration health effects. Furthermore, the finger contact pressure can alter these effects. It is difficult to test these hypotheses using human subjects or existing animal models. The objective of this study was to develop a new rat-tail vibration model to investigate the combined effects of vibration and contact pressure and to identify their relationships with the biodynamic responses. Physically, the new exposure system was developed by adding a loading device to an existing rat-tail model. An analytical model of the rat-tail exposure system was proposed and used to formulate the methods for quantifying the biodynamic responses. A series of tests with six tails dissected from rat cadavers were conducted to test and evaluate the new model. The experimental and modeling results demonstrate that the new model behaves as predicted. Unlike the previous model, the vibration strain and stress of the rat tail does not depend primarily on the vibration response of the tail itself but on that of the loading device. This makes it possible to quantify and control the biodynamic responses conveniently and reliably by measuring the loading device response. This study also identified the basic characteristics of the tail biodynamic responses in the exposure system, which can be used to help design the experiments for studying vibration biological effects. |
Sunless and indoor tanning among U.S. non-Hispanic white women ages 18-49 years
Seidenberg AB , Julian AK , Hartman AM , Holman DM . J Dermatol Nurses' Assoc 2023 15 (3) 123-132 The use of indoor ultraviolet tanning devices (also known as "indoor tanning") has declined in recent years. Less is known about use of dihydroxyacetone-containing products used for tanning (also known as "sunless tanning"). We analyzed data from the 2015 National Health Interview Survey. Analysis was limited to non-Hispanic white women ages 18-49 years. We estimated the proportion of women reporting spray tanning, self-applied lotion tanning, and indoor tanning and used weighted multivariable logistic regression models to examine the relationships between sociodemographic characteristics, skin cancer risk factors, and other cancer risk factors with sunless and indoor tanning. Overall, 17.7% of women reported sunless tanning. Lotion tanning was more common (15.3%) than spray tanning (6.8%), whereas 12.0% of women engaged in indoor tanning. Among sunless tanners, 23.7% also engaged in indoor tanning. Younger age, ever having a skin examination, skin reactions to the sun, binge drinking, and being at a healthy weight were associated with sunless tanning. Although sunless tanning may be less harmful for skin cancer risk than indoor tanning, the frequency with which the two behaviors co-occur suggests that efforts to address societal pressures for women to alter their skin color may have important public health benefits. © Lippincott Williams & Wilkins. |
Segmented filamentous bacteria impede rotavirus infection via retinoic acid receptor-mediated signaling
Ngo VL , Shi Z , Jiang B , Gewirtz AT . Gut Microbes 2023 15 (1) 2174407 Prevention of rotavirus (RV) infection by gut-resident segmented filamentous bacteria (SFB) is an example of the influence of gut microbiota composition on enteric viral infection. Yet, the mechanism by which SFB prevents RV infection is poorly understood. A recent report that SFB colonization of germfree mice generates retinoic acid (RA) thus activating RA receptor (RAR) signaling, which protected against Citrobacter rodentium infection, prompted us to investigate whether this pathway might contribute to SFB's protection against RV infection. Colonization of conventional mice by SFB indeed increased intestinal RA levels and direct administration of RA partially mimicked the protection against RV infection conferred by SFB. Moreover, blockade of RAR signaling eliminated SFB's protection against RV infection. Blockade of RAR signaling did not impact RV infection in the absence of SFB, nor did it alter the protection against RV infection conferred by bacterial flagellin, which in contrast to SFB, is dependent upon IL-22 signaling. SFB/RA-mediated prevention of RV infection was associated with an RA-dependent increase in enterocyte migration, consistent with the notion that enhanced anoikis is the ultimate means by which SFB, IL-22, and RA impede RV infection. |
Influence of Hormonal Contraceptive Use and HIV on Cervicovaginal Cytokines and Microbiota in Malawi.
Haddad LB , Tang JH , Davis NL , Kourtis AP , Chinula L , Msika A , Tegha G , Hosseinipour MC , Nelson JAE , Hobbs MM , Gajer P , Ravel J , De Paris K . mSphere 2023 8 (1) e0058522 Important questions remain on how hormonal contraceptives alter the local immune environment and the microbiota in the female genital tract and how such effects may impact susceptibility to HIV infection. We leveraged samples from a previously conducted clinical trial of Malawian women with (n = 73) and without (n = 24) HIV infection randomized to depot medroxyprogesterone acetate (DMPA) or the levonogestrel implant in equal numbers within each group and determined the effects of these hormonal contraceptives (HCs) on the vaginal immune milieu and the composition of the vaginal microbiota. Longitudinal data for soluble immune mediators, measured by multiplex bead arrays and enzyme-linked immunosorbent assays (ELISAs), and vaginal microbiota, assessed by 16S rRNA gene amplicon, were collected prior to and over a period of 180 days post-HC initiation. DMPA and levonogestrel had only minimal effects on the vaginal immune milieu and microbiota. In women with HIV, with the caveat of a small sample size, there was an association between the median log(10) change in the interleukin-12 (IL-12)/IL-10 ratio in vaginal fluid at day 180 post-HC compared to baseline when these women were classified as having a community state type (CST) IV vaginal microbiota and were randomized to DMPA. Long-lasting alterations in soluble immune markers or shifts in microbiota composition were not observed. Furthermore, women with HIV did not exhibit increased viral shedding in the genital tract after HC initiation. Consistent with the results of the ECHO (Evidence for Contraceptive Options and HIV Outcomes) trial, our data imply that the progestin-based HC DMPA and levonorgestrel are associated with minimal risk for women with HIV. (This study has been registered at ClinicalTrials.gov under registration no. NCT02103660). IMPORTANCE The results of the Evidence for Contraceptive Options and HIV Outcomes (ECHO) trial, the first large randomized controlled clinical trial comparing the HIV acquisition risk of women receiving DMPA, the levonorgestrel (LNG) implant, or the copper intrauterine device (IUD), did not reveal an increased risk of HIV acquisition for women on any of these three contraceptives. Our study results confirm that the two different progestin-based hormonal contraceptives DMPA and levonogestrel will not increase the risk for HIV infection. Furthermore, DMPA and levonogestrel have only minimal effects on the immune milieu and the microbiota in the vaginal tract, attesting to the safety of these hormonal contraceptives. |
When traumatic brain injuries in children become chronic health conditions
Kurowski BG , Haarbauer-Krupa J , Giza CC . J Head Trauma Rehabil 2022 38 (4) 348-350 THE CENTERS for disease control and prevention (CDC) Report to Congress on the Management of Traumatic Brain Injury (TBI) described the management of TBI in children as an important public health issue.1 A brain injury of any severity can occur at 1 or multiple times during childhood. As a result of TBI during childhood, changes in health, cognition, family environment, and behavior can affect learning, self-regulation, and social participation, which are critical skills to optimize functioning in adulthood.2 TBI affects children differently than it affects adults because it can impact brain development during key periods that may alter developmental trajectories over time.2 Although most children recover well physically, they can experience changes in behavior and cognition that may not be recognized immediately.2 During childhood, a history of TBI is often associated with several health conditions, including epilepsy, headache/migraine, autonomic disturbances, intellectual disability, vision problems, speech and language problems, and behavior and mental health problems.3 |
Understanding toxicity associated with boron nitride nanotubes: Review of toxicity studies, exposure assessment at manufacturing facilities, and read-across
Kodali V , Roberts JR , Glassford E , Gill R , Friend S , Dunn KL , Erdely A . J Mater Res 2022 37 (24) 4620-4638 Boron nitride nanotubes (BNNT) are produced by many different methods leading to variances in physicochemical characteristics and impurities in the final product. These differences can alter the toxicity profile. The importance of understanding the potential pathological implications of this high aspect ratio nanomaterial is increasing as new approaches to synthesize and purify in large scale are being developed. In this review, we discuss the various factors of BNNT production that can influence its toxicity followed by summarizing the toxicity findings from in vitro and in vivo studies conducted to date, including a review of particle clearance observed with various exposure routes. To understand the risk to workers and interpret relevance of toxicological findings, exposure assessment at manufacturing facilities was discussed. Workplace exposure assessment of BNNT from two manufacturing facilities measured boron concentrations in personal breathing zones from non-detectable to 0.95 µg/m3 and TEM structure counts of 0.0123 ± 0.0094 structures/cm3, concentrations well below what was found with other engineered high aspect ratio nanomaterials like carbon nanotubes and nanofibers. Finally, using a purified BNNT, a “read-across” toxicity assessment was performed to demonstrate how known hazard data and physicochemical characteristics can be utilized to evaluate potential inhalation toxicity concerns. Graphical [Figure not available: see fulltext.]. © 2022, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. |
Effect of cooling on static postural balance while wearing firefighter's protective clothing in hot environment
Aljaroudi AM , Bhattacharya A , Strauch A , Quinn TD , Jon Williams W . Int J Occup Saf Ergon 2022 1-20 PURPOSE: Postural imbalance can result from hyperthermia mediated muscular fatigue and is a major factor contributing to injuries from falling. The objective of this study was to investigate the effect of exercise-induced hyperthermia and the impact of cooling on postural balance while wearing firefighters' protective clothing (FPC) in a hot environment. METHODS: A portable force platform measured postural balance characterized by postural sway patterns using center of pressure metrics. Twelve healthy, physically fit males were recruited to stand on the force platform once with eyes open and once with eyes closed before and after treadmill exercise (40% V˙O(2max)) inside an environmental chamber under hot and humid conditions (30 °C and 70% relative humidity) while wearing FPC. Subjects participated in two randomly assigned experimental phases: control and cooling intervention. RESULTS: A significant increase in physiological responses and postural balance metrics was observed after exercising in the heat chamber while wearing FPC. Cooling resulted in a significant effect only on postural sway speed after exercise-induced hyperthermia. CONCLUSIONS: Hyperthermia can negatively alter postural balance metrics, which may lead to an increased likelihood of falling. The utilization of body cooling reduced the thermal strain but had limited impact on postural balance stability. |
Prenatal exposure to polybrominated diphenyl ethers and BMI Z-scores from 5 to 14years
Kupsco A , Sjödin A , Cowell W , Jones R , Oberfield S , Wang S , Hoepner LA , Gallagher D , Baccarelli AA , Goldsmith J , Rundle AG , Herbstman JB . Environ Health 2022 21 (1) 82 BACKGROUND: Polybrominated diphenyl ethers (PBDEs) are flame-retardant compounds widely used in household products until phase out in 2004. PBDEs are endocrine disruptors and are suggested to influence signaling related to weight control. Prenatal exposures to PBDEs may alter childhood adiposity, yet few studies have examined these associations in human populations. METHODS: Data were collected from a birth cohort of Dominican and African American mother-child pairs from New York City recruited from 1998 to 2006. PBDE congeners BDE-47, - 99, - 100, and - 153 were measured in cord plasma (ng/μL) and dichotomized into low (< 80th percentile) and high (>80th percentile) exposure categories. Height and weight were collected at ages 5, 7, 9, 11, and an ancillary visit from 8 to 14 years (n = 289). Mixed-effects models with random intercepts for participant were used to assess associations between concentrations of individual PBDE congeners or the PBDE sum and child BMI z-scores (BMIz). To assess associations between PBDEs and the change in BMIz over time, models including interactions between PBDE categories and child age and (child age)(2) were fit. Quantile g-computation was used to investigate associations between BMIz and the total PBDE mixture. Models were adjusted for baseline maternal covariates: ethnicity, age, education, parity, partnership status, and receipt of public assistance, and child covariates: child sex and cord cholesterol and triglycerides. RESULTS: The prevalence of children with obesity at age 5 was 24.2% and increased to 30% at age 11. Neither cord levels of individual PBDEs nor the total PBDE mixture were associated with overall BMIz in childhood. The changes in BMIz across childhood were not different between children with low or high PBDEs. Results were similar when adjusting for postnatal PBDE exposures. CONCLUSIONS: Prenatal PBDE exposures were not associated with child growth trajectories in a cohort of Dominican and African American children. |
Interaction of maternal medication use with ambient heat exposure on congenital heart defects in the National Birth Defects Prevention Study
Ou Y , Papadopoulos EA , Fisher SC , Browne ML , Lin Z , Soim A , Lu Y , Sheridan S , Reefhuis J , Langlois PH , Romitti PA , Bell EM , Feldkamp ML , Malik S , Lin S . Environ Res 2022 215 114217 BACKGROUND: Maternal exposure to weather-related extreme heat events (EHEs) has been associated with congenital heart defects (CHDs) in offspring. Certain medications may affect an individual's physiologic responses to EHEs. We evaluated whether thermoregulation-related medications modified associations between maternal EHE exposure and CHDs. METHODS: We linked geocoded residence data from the U.S. National Birth Defects Prevention Study, a population-based case-control study, to summertime EHE exposures. An EHE was defined using the 90th percentile of daily maximum temperature (EHE90) for each of six climate regions during postconceptional weeks 3-8. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for associations between EHE90 and the risk of CHDs were estimated by strata of maternal thermoregulation-related medication use and climate region. Interaction effects were evaluated on multiplicative and additive scales. RESULTS: Over 45% of participants reported thermoregulation-related medication use during the critical period of cardiogenesis. Overall, these medications did not significantly modify the association between EHEs and CHDs. Still, medications that alter central thermoregulation increased aORs (95% CI) of EHE90 from 0.73 (0.41, 1.30) among non-users to 5.09 (1.20, 21.67) among users in the Southwest region, U.S. This effect modification was statistically significant on the multiplicative (P = 0.03) and additive scales, with an interaction contrast ratio (95% CI) of 1.64 (0.26, 3.02). CONCLUSION: No significant interaction was found for the maternal use of thermoregulation-related medications with EHEs on CHDs in general, while medications altering central thermoregulation significantly modified the association between EHEs and CHDs in Southwest U.S. This finding deserves further research. |
Maternal urinary organophosphate ester metabolite concentrations and glucose tolerance during pregnancy: The HOME Study
Yang W , Braun JM , Vuong AM , Percy Z , Xu Y , Xie C , Deka R , Calafat AM , Ospina M , Yolton K , Cecil KM , Lanphear BP , Chen A . Int J Hyg Environ Health 2022 245 114026 BACKGROUND: Endocrine-disrupting chemicals may alter glucose homeostasis, especially during pregnancy. Biomonitoring studies suggest ubiquitous human exposure to organophosphate esters (OPEs), chemicals with endocrine-disrupting capabilities. Few studies have examined the association between maternal exposure to OPEs and blood glucose during pregnancy. METHODS: With data from 301 pregnant women in the Health Outcomes and Measures of the Environment (HOME) Study, a prospective pregnancy and birth cohort in Cincinnati, Ohio, USA, we examined whether OPE concentrations were associated with changes in blood glucose. We quantified four OPE metabolites in maternal spot urine samples collected at 16- and 26-weeks pregnancy. We extracted results from the glucose challenge test (GCT) and oral glucose tolerance test (OGTT) via medical chart review. Women with GCT ≥ 140 mg/dL or any abnormal values in OGTT (≥ 95 mg/dL fasting glucose, ≥ 180 mg/dL 1-h glucose, ≥ 155 mg/dL 2-h glucose, ≥ 140 mg/dL 3-h glucose) were defined as having elevated glucose levels. We used linear regression and Bayesian Kernel Machine Regression (BKMR) to estimate the associations of individual OPE metabolites and OPE mixtures with blood glucose levels during pregnancy. We used modified Poisson regression to estimate the associations of OPE metabolite concentrations with elevated glucose levels. We further examined effect measure modification by maternal characteristics (age, pre-pregnancy body mass index [BMI], and race/ethnicity). RESULTS: Diphenyl phosphate (DPHP) had the highest geometric mean concentration of the urinary OPE metabolites (1.83 μg/L at 16 weeks, 1.24 μg/L at 26 weeks). Thirty women (10.0%) had elevated glucose levels. Individual OPE metabolites or their mixtures were not significantly associated with continuous GCT results. We did not observe effect measure modification by maternal age, pre-pregnancy BMI categories, or race/ethnicity. Compared with women in the 1st tertile of average DPHP of 16- and 26 weeks of pregnancy, women in the 3rd tertile tended to have a reduced risk of elevated glucose levels (RR = 0.41, 95% CI = 0.16-1.06, p for trend = 0.06). CONCLUSION: In this cohort, maternal urinary OPE metabolite concentrations were weakly associated with blood glucose levels during pregnancy. |
High-fat western diet consumption exacerbates silica-induced pulmonary inflammation and fibrosis
Thompson JA , Johnston RA , Price RE , Hubbs AF , Kashon ML , McKinney W , Fedan JS . Toxicol Rep 2022 9 1045-1053 Consumption of a high-fat Western diet (HFWD) contributes to obesity, disrupted adipose endocrine function, and development of metabolic dysfunction (MetDys). Impaired lung function, pulmonary hypertension, and asthma are all associated with MetDys. Over 35% of adults in the U.S. have MetDys, yet interactions between MetDys and hazardous occupational inhalation exposures are largely unknown. Occupational silica-inhalation leads to chronic lung inflammation, progressive fibrosis, and significant respiratory morbidity and mortality. In this study, we aim to determine the potential of HFWD-consumption to alter silica-induced inflammatory responses in the lung. Six-wk old male F344 rats fed a high fat Western diet (HFWD; 45 kcal % fat, sucrose 22.2% by weight) to induce MetDys, or standard rat chow (STD, controls) for 16 wk were subsequently exposed to silica (6 h/d, 5 d/wk, 39 d; Min-U-Sil 5®, 15 mg/m(3)) or filtered air; animals remained on their assigned diet for the study duration. Indices of lung inflammation and histopathologic assessment of lung tissue were quantified at 0, 4, and 8 wk after cessation of exposure. Combined HFWD+silica exposure increased bronchoalveolar lavage (BAL) total cells, leukocytes, and BAL lactate dehydrogenase compared to STD+silica exposure controls at all timepoints. HFWD+silica exposure increased BAL proinflammatory cytokines at 4 and 8 wk compared to STD+silica exposure. At 8 wk, histopathological analysis confirmed that alveolitis, epithelial cell hypertrophy and hyperplasia, lipoproteinosis, fibrosis, bronchoalveolar lymphoid hyperplasia and granulomas were exacerbated in the HFWD+silica-exposed group compared to STD+silica-exposed controls. Our results suggest an increased susceptibility to silica-induced lung disease caused by HFWD consumption. |
Defining the risk of SARS-CoV-2 variants on immune protection.
DeGrace MM , Ghedin E , Frieman MB , Krammer F , Grifoni A , Alisoltani A , Alter G , Amara RR , Baric RS , Barouch DH , Bloom JD , Bloyet LM , Bonenfant G , Boon ACM , Boritz EA , Bratt DL , Bricker TL , Brown L , Buchser WJ , Carreo JM , Cohen-Lavi L , Darling TL , Davis-Gardner ME , Dearlove BL , Di H , Dittmann M , Doria-Rose NA , Douek DC , Drosten C , Edara VV , Ellebedy A , Fabrizio TP , Ferrari G , Florence WC , Fouchier RAM , Franks J , Garca-Sastre A , Godzik A , Gonzalez-Reiche AS , Gordon A , Haagmans BL , Halfmann PJ , Ho DD , Holbrook MR , Huang Y , James SL , Jaroszewski L , Jeevan T , Johnson RM , Jones TC , Joshi A , Kawaoka Y , Kercher L , Koopmans MPG , Korber B , Koren E , Koup RA , LeGresley EB , Lemieux JE , Liebeskind MJ , Liu Z , Livingston B , Logue JP , Luo Y , McDermott AB , McElrath MJ , Meliopoulos VA , Menachery VD , Montefiori DC , Mhlemann B , Munster VJ , Munt JE , Nair MS , Netzl A , Niewiadomska AM , O'Dell S , Pekosz A , Perlman S , Pontelli MC , Rockx B , Rolland M , Rothlauf PW , Sacharen S , Scheuermann RH , Schmidt SD , Schotsaert M , Schultz-Cherry S , Seder RA , Sedova M , Sette A , Shabman RS , Shen X , Shi PY , Shukla M , Simon V , Stumpf S , Sullivan NJ , Thackray LB , Theiler J , Thomas PG , Trifkovic S , Treli S , Turner SA , Vakaki MA , vanBakel H , VanBlargan LA , Vincent LR , Wallace ZS , Wang L , Wang M , Wang P , Wang W , Weaver SC , Webby RJ , Weiss CD , Wentworth DE , Weston SM , Whelan SPJ , Whitener BM , Wilks SH , Xie X , Ying B , Yoon H , Zhou B , Hertz T , Smith DJ , Diamond MS , Post DJ , Suthar MS . Nature 2022 605 (7911) 640-652 The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced following infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases (NIAID) within the National Institutes of Health (NIH) established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) program. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants potentially impacting transmission, virulence, and resistance to convalescent and vaccine-induced immunity. The SAVE program serves as a critical data-generating component of the United States Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines, and therapeutics and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity, and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models, and pivotal findings facilitated by this collaborative approach and identify future challenges. This program serves as a template for the response against rapidly evolving pandemic pathogens by monitoring viral evolution in the human population to identify variants that could erode the effectiveness of countermeasures. |
Defective Interfering Viral Particle Treatment Reduces Clinical Signs and Protects Hamsters from Lethal Nipah Virus Disease.
Welch SR , Spengler JR , Harmon JR , Coleman-McCray JD , Scholte FEM , Genzer SC , Lo MK , Montgomery JM , Nichol ST , Spiropoulou CF . mBio 2022 13 (2) e0329421 Defective interfering particles (DIs) contain a considerably smaller genome than the parental virus but retain replication competency. As DIs can directly or indirectly alter propagation kinetics of the parental virus, they offer a novel approach to antiviral therapy, capitalizing on knowledge from natural infection. However, efforts to translate in vitro inhibition to in vivo screening models remain limited. We investigated the efficacy of virus-like particles containing DI genomes (therapeutic infectious particles [TIPs]) in the Syrian hamster model of lethal Nipah virus (NiV) disease. We found that coadministering a high dose of TIPs intraperitoneally with virus challenge improved clinical course and reduced lethality. To mimic natural exposure, we also evaluated lower-dose TIP delivery and virus challenge intranasally, finding equally efficacious reduction in disease severity and overall lethality. Eliminating TIP replicative capacity decreased efficacy, suggesting protection via direct inhibition. These data provide evidence that TIP-mediated treatment can confer protection against disease and lethal outcome in a robust animal NiV model, supporting further development of TIP treatment for NiV and other high-consequence pathogens. IMPORTANCE Here, we demonstrate that treatment with defective interfering particles (DIs), a natural by-product of viral infection, can significantly improve the clinical course and outcome of viral disease. When present with their parental virus, DIs can directly or indirectly alter viral propagation kinetics and exert potent inhibitory properties in cell culture. We evaluated the efficacy of a selection of virus-like particles containing DI genomes (TIPs) delivered intranasally in a lethal hamster model of Nipah virus disease. We demonstrate significantly improved clinical outcomes, including reduction in both lethality and the appearance of clinical signs. This work provides key efficacy data in a robust model of Nipah virus disease to support further development of TIP-mediated treatment against high-consequence viral pathogens. |
Effects of buprenorphine treatment on influenza pathogenesis in the ferret (Mustela putorius furo)
Mrotz VJ , Nestor KM , Maines TR , Powell N , Belser JA . Comp Med 2022 72 (1) 22-29 Ferrets are the gold-standard model for influenza A virus (IAV) research due to their natural susceptibility to human and zoonotic IAV, comparable respiratory anatomy and physiology to humans, and development of clinical signs similar to those seen in infected people. Because the presence and progression of clinical signs can be useful in infectious disease research, uncertainty in how analgesics alter research outcomes or compromise characteristics of disease progression have outweighed the concern regarding animal discomfort from these symptoms. Nonetheless, the principles of animal research require consideration of refinements for this important model for IAV research. Opioids offer a possible refinement option that would not directly affect the inflammatory cascade involved in IAV infection. Mirroring pathogenicity studies that use ferrets, 12 ferrets were inoculated intranasally with the A(H3N2) IAV A/Panama/2007/1999 and divided into 3 treatment groups ( n = 4 each), of which 2 groups received buprenorphine treatments on different schedules and the third received a saline control. The duration and location of viral replication, lymphohematopoietic changes, and clinical signs were comparable across all groups at all time points. High quantities of infectious virus in nasal wash specimens were detected in ferrets from all groups through day 5 after inoculation, and peak viral titers from the upper respiratory tract did not differ between ferrets receiving buprenorphine treatments on either schedule. Compared with the saline group, ferrets receiving buprenorphine exhibited transient weight loss and pyrexia, but all groups ultimately achieved similar peaks in both of these measurements. Collectively, these findings support the continued evaluation of buprenorphine as a refinement for IAV-challenged ferrets. |
Pregnancy exposure to phthalates and DNA methylation in male placenta - An epigenome-wide association study.
Jedynak P , Tost J , Calafat AM , Bourova-Flin E , Broséus L , Busato F , Forhan A , Heude B , Jakobi M , Schwartz J , Slama R , Vaiman D , Lepeule J , Philippat C . Environ Int 2022 160 107054 BACKGROUND: Exposure to phthalates during pregnancy may alter DNA methylation in the placenta, a crucial organ for the growth and development of the fetus. OBJECTIVES: We studied associations between urinary concentrations of phthalate biomarkers during pregnancy and placental DNA methylation. METHODS: We measured concentrations of 11 phthalate metabolites in maternal spot urine samples collected between 22 and 29 gestational weeks in 202 pregnant women. We analyzed DNA methylation levels in placental tissue (fetal side) collected at delivery. We first investigated changes in global DNA methylation of repetitive elements Alu and LINE-1. We then performed an adjusted epigenome-wide association study using IlluminaHM450 BeadChips and identified differentially methylated regions (DMRs) associated with phthalate exposure. RESULTS: Monobenzyl phthalate concentration was inversely associated with placental methylation of Alu repeats. Moreover, all phthalate biomarkers except for monocarboxy-iso-octyl phthalate and mono(2-ethyl-5-hydroxyhexyl) phthalate were associated with at least one DMR. All but three DMRs showed increased DNA methylation with increased phthalate exposure. The largest identified DMR (22 CpGs) was positively associated with monocarboxy-iso-nonyl phthalate and encompassed heat shock proteins (HSPA1A, HSPA1L). The remaining DMRs encompassed transcription factors and nucleotide exchange factors, among other genes. CONCLUSIONS: This is the first description of genome-wide modifications of placental DNA methylation in association with pregnancy exposure to phthalates. Our results suggest epigenetic mechanisms by which exposure to these compounds could affect fetal development. Of interest, four identified DMRs had been previously associated with maternal smoking, which may suggest particular sensitivity of these genomic regions to the effect of environmental contaminants. |
High-fat western diet-consumption alters crystalline silica-induced serum adipokines, inflammatory cytokines and arterial blood flow in the F344 rat
Thompson JA , Krajnak K , Johnston RA , Kashon ML , McKinney W , Fedan JS . Toxicol Rep 2022 9 12-21 Adipose tissue (AT) plays a central role in the maintenance of whole-body energy homeostasis through release of adipokines. High-fat Western diet (HFWD)-consumption contributes to obesity, disruption of adipocyte metabolism, chronic systemic inflammation, and metabolic dysfunction (MetDys). MetDys is associated with impaired lung function, pulmonary hypertension, and asthma. Thirty-five percent of adults in the U.S. have MetDys, yet the impact of MetDys on susceptibility to occupational hazards is unknown. The aim of this study was to determine the potential of HFWD-consumption to alter inhaled crystalline silica dust-induced metabolic responses. Six-wk old male F344 rats were fed a HFWD (45 kcal % fat, sucrose 22.2 % by weight) or standard rat chow (STD, controls), and exposed to silica-inhalation (6 h/d, 5 d/wk, 39 d; Min-U-Sil 5®, 15 mg/m3) or filtered air. Indices of MetDys and systemic inflammation were measured at 0, 4, and 8 wk following cessation of silica exposure. At 8 wk post-exposure, silica reduced serum leptin and adiponectin levels, and increased arterial pulse frequency. HFWD-consumption induced weight gain, altered adipokines, liver, kidney, and pancreatic function, and increased tail artery blood flow. At 8 wk in HFWD + SIL-treated animals, the levels of serum pro-inflammatory cytokines (IFN-γ, CXCL-1, TNF-α, IL-1β, IL-4, IL-5, IL-6, IL-10 and IL-13) were increased compared to STD + SIL but were less than HFWD + AIR-induced levels. In conclusion, consumption of a HFWD altered silica-induced metabolic responses and silica exposure disrupted AT endocrine function. These findings demonstrate previously unknown interactions between HFWD-consumption and occupational silica exposure. © 2021 The Authors |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure