Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-10 (of 10 Records) |
Query Trace: Ali AR[original query] |
---|
Changes in health indicators among caregivers - United States, 2015-2016 to 2021-2022
Kilmer G , Omura JD , Bouldin ED , Walker J , Spears K , Gore J , Ali AR , McGuire LC . MMWR Morb Mortal Wkly Rep 2024 73 (34) 740-746 Caregivers provide support to persons who might otherwise require placement in long-term care facilities. Approximately one in five U.S. adults provides care to family members or friends who have a chronic health condition or disability. Promoting the well-being of this large segment of the population is a public health priority as recognized by the 2022 National Strategy to Support Family Caregivers. Although negative associations between caregiving and caregiver health are known, changes in the health status of caregivers over time are not. Data from the 2015-2016 and 2021-2022 Behavioral Risk Factor Surveillance System were analyzed to compare changes in the prevalence of 19 health indicators among cross-sectional samples of caregivers and noncaregivers at different time points. Caregivers experienced improvements in prevalence of four health indicators, whereas six worsened. Some health indicators, such as cigarette smoking, improved for both caregivers and noncaregivers, although smoking prevalence remained higher for caregivers (16.6% versus 11.7%). Prevalence of lifetime depression increased for both groups and remained higher among caregivers (25.6%) than among noncaregivers (18.6%). During 2021-2022, age-adjusted estimates for caregivers were unfavorable for 13 of the 19 health indicators when compared with noncaregivers. Strategies for supporting caregivers are available, and integrating these with existing programs to address mental health and chronic diseases among this population might improve caregiver well-being. For example, many community organizations support caregivers by offering interventions designed to relieve caregiver strain, including skills training, support groups, and care coordination. |
Application of a life table approach to assess duration of BNT162b2 vaccine-derived immunity by age using COVID-19 case surveillance data during the Omicron variant period
Sternberg MR , Johnson A , King J , Ali AR , Linde L , Awofeso AO , Baker JS , Bayoumi NS , Broadway S , Busen K , Chang C , Cheng I , Cima M , Collingwood A , Dorabawila V , Drenzek C , Fleischauer A , Gent A , Hartley A , Hicks L , Hoskins M , Jara A , Jones A , Khan SI , Kamal-Ahmed I , Kangas S , Kanishka F , Kleppinger A , Kocharian A , León TM , Link-Gelles R , Lyons BC , Masarik J , May A , McCormick D , Meyer S , Milroy L , Morris KJ , Nelson L , Omoike E , Patel K , Pietrowski M , Pike MA , Pilishvili T , Peterson Pompa X , Powell C , Praetorius K , Rosenberg E , Schiller A , Smith-Coronado ML , Stanislawski E , Strand K , Tilakaratne BP , Vest H , Wiedeman C , Zaldivar A , Silk B , Scobie HM . PLoS One 2023 18 (9) e0291678 BACKGROUND: SARS-CoV-2 Omicron variants have the potential to impact vaccine effectiveness and duration of vaccine-derived immunity. We analyzed U.S. multi-jurisdictional COVID-19 vaccine breakthrough surveillance data to examine potential waning of protection against SARS-CoV-2 infection for the Pfizer-BioNTech (BNT162b) primary vaccination series by age. METHODS: Weekly numbers of SARS-CoV-2 infections during January 16, 2022-May 28, 2022 were analyzed by age group from 22 U.S. jurisdictions that routinely linked COVID-19 case surveillance and immunization data. A life table approach incorporating line-listed and aggregated COVID-19 case datasets with vaccine administration and U.S. Census data was used to estimate hazard rates of SARS-CoV-2 infections, hazard rate ratios (HRR) and percent reductions in hazard rate comparing unvaccinated people to people vaccinated with a Pfizer-BioNTech primary series only, by age group and time since vaccination. RESULTS: The percent reduction in hazard rates for persons 2 weeks after vaccination with a Pfizer-BioNTech primary series compared with unvaccinated persons was lowest among children aged 5-11 years at 35.5% (95% CI: 33.3%, 37.6%) compared to the older age groups, which ranged from 68.7%-89.6%. By 19 weeks after vaccination, all age groups showed decreases in the percent reduction in the hazard rates compared with unvaccinated people; with the largest declines observed among those aged 5-11 and 12-17 years and more modest declines observed among those 18 years and older. CONCLUSIONS: The decline in vaccine protection against SARS-CoV-2 infection observed in this study is consistent with other studies and demonstrates that national case surveillance data were useful for assessing early signals in age-specific waning of vaccine protection during the initial period of SARS-CoV-2 Omicron variant predominance. The potential for waning immunity during the Omicron period emphasizes the importance of continued monitoring and consideration of optimal timing and provision of booster doses in the future. |
Notes from the field: Comparison of COVID-19 mortality rates among adults aged 65 years who were unvaccinated and those who received a bivalent booster dose within the preceding 6 months - 20 U.S. Jurisdictions, September 18, 2022-April 1, 2023
Johnson AG , Linde L , Payne AB , Ali AR , Aden V , Armstrong B , Armstrong B , Auche S , Bayoumi NS , Bennett S , Boulton R , Chang C , Collingwood A , Cueto K , Davidson SL , Du Y , Fleischauer A , Force V , Frank D , Hamilton R , Harame K , Harrington P , Hicks L , Hodis JD , Hoskins M , Jones A , Kanishka F , Kaur R , Kirkendall S , Khan SI , Klioueva A , Link-Gelles R , Lyons S , Mansfield J , Markelz A , Masarik J 3rd , Mendoza E , Morris K , Omoike E , Paritala S , Patel K , Pike M , Pompa XP , Praetorius K , Rammouni N , Razzaghi H , Riggs A , Shi M , Sigalo N , Stanislawski E , Tilakaratne BP , Turner KA , Wiedeman C , Silk BJ , Scobie HM . MMWR Morb Mortal Wkly Rep 2023 72 (24) 667-669 Updated (bivalent) COVID-19 vaccines were first recommended by CDC on September 1, 2022.* An analysis of case and death rates by vaccination status shortly after authorization of bivalent COVID-19 vaccines showed that receipt of a bivalent booster dose provided additional protection against SARS-CoV-2 infection and associated death (1). In this follow-up report on the durability of bivalent booster protection against death among adults aged ≥65 years, mortality rate ratios (RRs) were estimated among unvaccinated persons and those who received a bivalent booster dose by time since vaccination during three periods of Omicron lineage predominance (BA.5 [September 18–November 5, 2022], BQ.1/BQ.1.1 [November 6, 2022–January 21, 2023], and XBB.1.5 [January 22–April 1, 2023]).† | | During September 18, 2022–April 1, 2023, weekly counts of COVID-19–associated deaths§ among unvaccinated persons and those who received a bivalent booster dose¶ were reported from 20 U.S. jurisdictions** that routinely link case surveillance data to immunization registries and vital registration databases (1). Vaccinated persons who did not receive a bivalent COVID-19 booster dose were excluded. Rate denominators were calculated from vaccine administration data and 2019 U.S. intercensal population estimates,†† with numbers of unvaccinated persons estimated by subtracting numbers of vaccinated persons from the 2019 intercensal population estimates, as previously described§§ (1). Average weekly mortality rates were estimated based on date of specimen collection¶¶ during each variant period by vaccination status and time since bivalent booster dose receipt. RRs were calculated by dividing rates among unvaccinated persons by rates among bivalent booster dose recipients; after detrending the underlying linear changes in weekly rates, 95% CIs were estimated from the remaining variation in rates observed*** (1). SAS (version 9.4; SAS Institute) and R (version 4.1.2; R Foundation) software were used to conduct all analyses. This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy.††† |
Genomic surveillance for SARS-CoV-2 variants: Circulation of Omicron lineages - United States, January 2022-May 2023
Ma KC , Shirk P , Lambrou AS , Hassell N , Zheng XY , Payne AB , Ali AR , Batra D , Caravas J , Chau R , Cook PW , Howard D , Kovacs NA , Lacek KA , Lee JS , MacCannell DR , Malapati L , Mathew S , Mittal N , Nagilla RR , Parikh R , Paul P , Rambo-Martin BL , Shepard SS , Sheth M , Wentworth DE , Winn A , Hall AJ , Silk BJ , Thornburg N , Kondor R , Scobie HM , Paden CR . MMWR Morb Mortal Wkly Rep 2023 72 (24) 651-656 CDC has used national genomic surveillance since December 2020 to monitor SARS-CoV-2 variants that have emerged throughout the COVID-19 pandemic, including the Omicron variant. This report summarizes U.S. trends in variant proportions from national genomic surveillance during January 2022-May 2023. During this period, the Omicron variant remained predominant, with various descendant lineages reaching national predominance (>50% prevalence). During the first half of 2022, BA.1.1 reached predominance by the week ending January 8, 2022, followed by BA.2 (March 26), BA.2.12.1 (May 14), and BA.5 (July 2); the predominance of each variant coincided with surges in COVID-19 cases. The latter half of 2022 was characterized by the circulation of sublineages of BA.2, BA.4, and BA.5 (e.g., BQ.1 and BQ.1.1), some of which independently acquired similar spike protein substitutions associated with immune evasion. By the end of January 2023, XBB.1.5 became predominant. As of May 13, 2023, the most common circulating lineages were XBB.1.5 (61.5%), XBB.1.9.1 (10.0%), and XBB.1.16 (9.4%); XBB.1.16 and XBB.1.16.1 (2.4%), containing the K478R substitution, and XBB.2.3 (3.2%), containing the P521S substitution, had the fastest doubling times at that point. Analytic methods for estimating variant proportions have been updated as the availability of sequencing specimens has declined. The continued evolution of Omicron lineages highlights the importance of genomic surveillance to monitor emerging variants and help guide vaccine development and use of therapeutics. |
Estimated preventable COVID-19-associated deaths due to non-vaccination in the United States
Jia KM , Hanage WP , Lipsitch M , Johnson AG , Amin AB , Ali AR , Scobie HM , Swerdlow DL . Eur J Epidemiol 2023 1-4 While some studies have previously estimated lives saved by COVID-19 vaccination, we estimate how many deaths could have been averted by vaccination in the US but were not because of a failure to vaccinate. We used a simple method based on a nationally representative dataset to estimate the preventable deaths among unvaccinated individuals in the US from May 30, 2021 to September 3, 2022 adjusted for the effects of age and time. We estimated that at least 232,000 deaths could have been prevented among unvaccinated adults during the 15 months had they been vaccinated with at least a primary series. While uncertainties exist regarding the exact number of preventable deaths and more granular data are needed on other factors causing differences in death rates between the vaccinated and unvaccinated groups to inform these estimates, this method is a rapid assessment on vaccine-preventable deaths due to SARS-CoV-2 that has crucial public health implications. The same rapid method can be used for future public health emergencies. |
Validation of the Diagnostic Interview Schedule For Children (DISC-5) tic disorder and attention-deficit/hyperactivity disorder modules
Bitsko RH , Holbrook JR , Fisher PW , Lipton C , van Wijngaarden E , Augustine EF , Mink JW , Vierhile A , Piacentini J , Walkup J , Firchow B , Ali AR , Badgley A , Adams HR . Evid Based Pract Child Adolesc Mental Heal 2023 Effective methods to assess mental disorders in children are necessary for accurate prevalence estimates and to monitor prevalence over time. This study assessed updates of the tic disorder and attention-deficit/hyperactivity disorder (ADHD) modules of the Diagnostic Interview Schedule for Children, Version 5 (DISC-5) that reflect changes in diagnostic criteria in the Diagnostic and Statistical Manual of Mental Disorders (Fifth edition, DSM-5). The DISC-5 tic disorder and ADHD parent- and child-report modules were compared to expert clinical assessment for 100 children aged 6–17 years (40 with tic disorder alone, 17 with tic disorder and ADHD, 9 with ADHD alone, and 34 with neither) for validation. For the tic disorder module, parent-report had high (>90%) sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy, while the youth-report had high specificity and PPV, moderate accuracy (81.4%), and lower sensitivity (69.8%) and NPV (67.3%). The ADHD module performed less well: parent-report had high NPV (91.4%), moderate sensitivity (80.8%), and lower specificity (71.6%), PPV (50.0%), and accuracy (74.0%); youth-report had moderate specificity (82.8%) and NPV (88.3%), and lower sensitivity (65.0%), PPV (54.2%), and accuracy (78.6%). Adding teacher-report of ADHD symptoms to DISC-5 parent-report of ADHD increased sensitivity (94.7%) and NPV (97.1%), but decreased specificity (64.2%), PPV (48.7%), and accuracy (72.2%). These findings support the use of the parent-report tic disorder module alone or in combination with the child report module in future research and epidemiologic studies; additional validation studies are warranted for the ADHD module. © 2023 Society of Clinical Child & Adolescent Psychology. |
Early Estimates of Bivalent mRNA Booster Dose Vaccine Effectiveness in Preventing Symptomatic SARS-CoV-2 Infection Attributable to Omicron BA.5- and XBB/XBB.1.5-Related Sublineages Among Immunocompetent Adults - Increasing Community Access to Testing Program, United States, December 2022-January 2023.
Link-Gelles R , Ciesla AA , Roper LE , Scobie HM , Ali AR , Miller JD , Wiegand RE , Accorsi EK , Verani JR , Shang N , Derado G , Britton A , Smith ZR , Fleming-Dutra KE . MMWR Morb Mortal Wkly Rep 2023 72 (5) 119-124 The SARS-CoV-2 Omicron sublineage XBB was first detected in the United States in August 2022.* XBB together with a sublineage, XBB.1.5, accounted for >50% of sequenced lineages in the Northeast by December 31, 2022, and 52% of sequenced lineages nationwide as of January 21, 2023. COVID-19 vaccine effectiveness (VE) can vary by SARS-CoV-2 variant; reduced VE has been observed against some variants, although this is dependent on the health outcome of interest. The goal of the U.S. COVID-19 vaccination program is to prevent severe disease, including hospitalization and death (1); however, VE against symptomatic infection can provide useful insight into vaccine protection against emerging variants in advance of VE estimates against more severe disease. Data from the Increasing Community Access to Testing (ICATT) national pharmacy program for SARS-CoV-2 testing were analyzed to estimate VE of updated (bivalent) mRNA COVID-19 vaccines against symptomatic infection caused by BA.5-related and XBB/XBB.1.5-related sublineages among immunocompetent adults during December 1, 2022–January 13, 2023. Reduction or failure of spike gene (S-gene) amplification (SGTF) in real-time reverse transcription–polymerase chain reaction (RT-PCR) was used as a proxy indicator of infection with likely BA.5-related sublineages and S-gene target presence (SGTP) of infection with likely XBB/XBB.1.5-related sublineages (2). Among 29,175 nucleic acid amplification tests (NAATs) with SGTF or SGTP results available from adults who had previously received 2–4 monovalent COVID-19 vaccine doses, the relative VE of a bivalent booster dose given 2–3 months earlier compared with no bivalent booster in persons aged 18–49 years was 52% against symptomatic BA.5 infection and 48% against symptomatic XBB/XBB.1.5 infection. As new SARS-CoV-2 variants emerge, continued vaccine effectiveness monitoring is important. Bivalent vaccines appear to provide additional protection against symptomatic BA.5-related sublineage and XBB/XBB.1.5-related sublineage infections in persons who had previously received 2, 3, or 4 monovalent vaccine doses. All persons should stay up to date with recommended COVID-19 vaccines, including receiving a bivalent booster dose when they are eligible. |
COVID-19 incidence and mortality among unvaccinated and vaccinated persons aged 12 years by receipt of bivalent booster doses and time since vaccination - 24 U.S. jurisdictions, October 3, 2021-December 24, 2022
Johnson AG , Linde L , Ali AR , DeSantis A , Shi M , Adam C , Armstrong B , Armstrong B , Asbell M , Auche S , Bayoumi NS , Bingay B , Chasse M , Christofferson S , Cima M , Cueto K , Cunningham S , Delgadillo J , Dorabawila V , Drenzek C , Dupervil B , Durant T , Fleischauer A , Hamilton R , Harrington P , Hicks L , Hodis JD , Hoefer D , Horrocks S , Hoskins M , Husain S , Ingram LA , Jara A , Jones A , Kanishka FNU , Kaur R , Khan SI , Kirkendall S , Lauro P , Lyons S , Mansfield J , Markelz A , Masarik J 3rd , McCormick D , Mendoza E , Morris KJ , Omoike E , Patel K , Pike MA , Pilishvili T , Praetorius K , Reed IG , Severson RL , Sigalo N , Stanislawski E , Stich S , Tilakaratne BP , Turner KA , Wiedeman C , Zaldivar A , Silk BJ , Scobie HM . MMWR Morb Mortal Wkly Rep 2023 72 (6) 145-152 On September 1, 2022, CDC recommended an updated (bivalent) COVID-19 vaccine booster to help restore waning protection conferred by previous vaccination and broaden protection against emerging variants for persons aged ≥12 years (subsequently extended to persons aged ≥6 months).* To assess the impact of original (monovalent) COVID-19 vaccines and bivalent boosters, case and mortality rate ratios (RRs) were estimated comparing unvaccinated and vaccinated persons aged ≥12 years by overall receipt of and by time since booster vaccination (monovalent or bivalent) during Delta variant and Omicron sublineage (BA.1, BA.2, early BA.4/BA.5, and late BA.4/BA.5) predominance.(†) During the late BA.4/BA.5 period, unvaccinated persons had higher COVID-19 mortality and infection rates than persons receiving bivalent doses (mortality RR = 14.1 and infection RR = 2.8) and to a lesser extent persons vaccinated with only monovalent doses (mortality RR = 5.4 and infection RR = 2.5). Among older adults, mortality rates among unvaccinated persons were significantly higher than among those who had received a bivalent booster (65-79 years; RR = 23.7 and ≥80 years; 10.3) or a monovalent booster (65-79 years; 8.3 and ≥80 years; 4.2). In a second analysis stratified by time since booster vaccination, there was a progressive decline from the Delta period (RR = 50.7) to the early BA.4/BA.5 period (7.4) in relative COVID-19 mortality rates among unvaccinated persons compared with persons receiving who had received a monovalent booster within 2 weeks-2 months. During the early BA.4/BA.5 period, declines in relative mortality rates were observed at 6-8 (RR = 4.6), 9-11 (4.5), and ≥12 (2.5) months after receiving a monovalent booster. In contrast, bivalent boosters received during the preceding 2 weeks-2 months improved protection against death (RR = 15.2) during the late BA.4/BA.5 period. In both analyses, when compared with unvaccinated persons, persons who had received bivalent boosters were provided additional protection against death over monovalent doses or monovalent boosters. Restored protection was highest in older adults. All persons should stay up to date with COVID-19 vaccination, including receipt of a bivalent booster by eligible persons, to reduce the risk for severe COVID-19. |
Spike Gene Target Amplification in a Diagnostic Assay as a Marker for Public Health Monitoring of Emerging SARS-CoV-2 Variants - United States, November 2021-January 2023.
Scobie HM , Ali AR , Shirk P , Smith ZR , Paul P , Paden CR , Hassell N , Zheng XY , Lambrou AS , Kondor R , MacCannell D , Thornburg NJ , Miller J , Wentworth D , Silk BJ . MMWR Morb Mortal Wkly Rep 2023 72 (5) 125-127 Monitoring emerging SARS-CoV-2 lineages and their epidemiologic characteristics helps to inform public health decisions regarding vaccine policy, the use of therapeutics, and health care capacity. When the SARS-CoV-2 Alpha variant emerged in late 2020, a spike gene (S-gene) deletion (Δ69-70) in the N-terminal region, which might compensate for immune escape mutations that impair infectivity (1), resulted in reduced or failed S-gene target amplification in certain multitarget reverse transcription-polymerase chain reaction (RT-PCR) assays, a pattern referred to as S-gene target failure (SGTF) (2). The predominant U.S. SARS-CoV-2 lineages have generally alternated between SGTF and S-gene target presence (SGTP), which alongside genomic sequencing, has facilitated early monitoring of emerging variants. During a period when Omicron BA.5-related sublineages (which exhibit SGTF) predominated, an XBB.1.5 sublineage with SGTP has rapidly expanded in the northeastern United States and other regions. |
COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence - 25 U.S. Jurisdictions, April 4-December 25, 2021.
Johnson AG , Amin AB , Ali AR , Hoots B , Cadwell BL , Arora S , Avoundjian T , Awofeso AO , Barnes J , Bayoumi NS , Busen K , Chang C , Cima M , Crockett M , Cronquist A , Davidson S , Davis E , Delgadillo J , Dorabawila V , Drenzek C , Eisenstein L , Fast HE , Gent A , Hand J , Hoefer D , Holtzman C , Jara A , Jones A , Kamal-Ahmed I , Kangas S , Kanishka F , Kaur R , Khan S , King J , Kirkendall S , Klioueva A , Kocharian A , Kwon FY , Logan J , Lyons BC , Lyons S , May A , McCormick D , Mendoza E , Milroy L , O'Donnell A , Pike M , Pogosjans S , Saupe A , Sell J , Smith E , Sosin DM , Stanislawski E , Steele MK , Stephenson M , Stout A , Strand K , Tilakaratne BP , Turner K , Vest H , Warner S , Wiedeman C , Zaldivar A , Silk BJ , Scobie HM . MMWR Morb Mortal Wkly Rep 2022 71 (4) 132-138 Previous reports of COVID-19 case, hospitalization, and death rates by vaccination status() indicate that vaccine protection against infection, as well as serious COVID-19 illness for some groups, declined with the emergence of the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, and waning of vaccine-induced immunity (1-4). During August-November 2021, CDC recommended() additional primary COVID-19 vaccine doses among immunocompromised persons and booster doses among persons aged 18 years (5). The SARS-CoV-2 B.1.1.529 (Omicron) variant emerged in the United States during December 2021 (6) and by December 25 accounted for 72% of sequenced lineages (7). To assess the impact of full vaccination with additional and booster doses (booster doses),() case and death rates and incidence rate ratios (IRRs) were estimated among unvaccinated and fully vaccinated adults by receipt of booster doses during pre-Delta (April-May 2021), Delta emergence (June 2021), Delta predominance (July-November 2021), and Omicron emergence (December 2021) periods in the United States. During 2021, averaged weekly, age-standardized case IRRs among unvaccinated persons compared with fully vaccinated persons decreased from 13.9 pre-Delta to 8.7 as Delta emerged, and to 5.1 during the period of Delta predominance. During October-November, unvaccinated persons had 13.9 and 53.2 times the risks for infection and COVID-19-associated death, respectively, compared with fully vaccinated persons who received booster doses, and 4.0 and 12.7 times the risks compared with fully vaccinated persons without booster doses. When the Omicron variant emerged during December 2021, case IRRs decreased to 4.9 for fully vaccinated persons with booster doses and 2.8 for those without booster doses, relative to October-November 2021. The highest impact of booster doses against infection and death compared with full vaccination without booster doses was recorded among persons aged 50-64 and 65 years. Eligible persons should stay up to date with COVID-19 vaccinations. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure