Last data update: Nov 04, 2024. (Total: 48056 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Afshari AA[original query] |
---|
Lung toxicity, deposition, and clearance of thermal spray coating particles with different metal profiles after inhalation in rats
Antonini JM , Kodali V , Meighan TG , McKinney W , Cumpston JL , Leonard HD , Cumpston JB , Friend S , Leonard SS , Andrews R , Zeidler-Erdely PC , Erdely A , Lee EG , Afshari AA . Nanotoxicology 2023 1-18 Thermal spray coating is a process in which molten metal is sprayed onto a surface. Little is known about the health effects associated with these aerosols. Sprague-Dawley rats were exposed to aerosols (25 mg/m(3) × 4 hr/d × 4 d) generated during thermal spray coating using different consumables [i.e. stainless-steel wire (PMET731), Ni-based wire (PMET885), Zn-based wire (PMET540)]. Control animals received air. Bronchoalveolar lavage was performed at 4 and 30 d post-exposure to assess lung toxicity. The particles were chain-like agglomerates and similar in size (310-378 nm). Inhalation of PMET885 aerosol caused a significant increase in lung injury and inflammation at both time points. Inhalation of PMET540 aerosol caused a slight but significant increase in lung toxicity at 4 but not 30 d. Exposure to PMET731 aerosol had no effect on lung toxicity. Overall, the lung responses were in the order: PMET885≫PMET540 >PMT731. Following a shorter exposure (25 mg/m(3) × 4 h/d × 1d), lung burdens of metals from the different aerosols were determined by ICP-AES at 0, 1, 4 and 30 d post-exposure. Zn was cleared from the lungs at the fastest rate with complete clearance by 4 d post-exposure. Ni, Cr, and Mn had similar rates of clearance as nearly half of the deposited metal was cleared by 4 d. A small but significant percentage of each of these metals persisted in the lungs at 30 d. The pulmonary clearance of Fe was difficult to assess because of inherently high levels of Fe in control lungs. |
Development of a thermal spray coating aerosol generator and inhalation exposure system
Afshari AA , McKinney W , Cumpston JL , Leonard HD , Cumpston JB , Meighan TG , Jackson M , Friend S , Kodali V , Lee EG , Antonini JM . Toxicol Rep 2022 9 126-135 Thermal spray coating involves spraying a product (oftentimes metal) that is melted by extremely high temperatures and then applied under pressure onto a surface. Large amounts of a complex metal aerosol (e.g., Fe, Cr, Ni, Zn) are formed during the process, presenting a potentially serious risk to the operator. Information about the health effects associated with exposure to these aerosols is lacking. Even less is known about the chemical and physical properties of these aerosols. The goal was to develop and test an automated thermal spray coating aerosol generator and inhalation exposure system that would simulate workplace exposures. An electric arc wire-thermal spray coating aerosol generator and exposure system was designed and separated into two areas: (1) an enclosed room where the spray coating occurs; (2) an exposure chamber with different measurement devices and controllers. The physicochemical properties of aerosols generated during electric arc wire-thermal spray coating using five different consumable wires were examined. The metal composition of each was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), including two stainless-steel wires [PMET720 (82 % Fe, 13 % Cr); PMET731(66 % Fe, 26 % Cr)], two Ni-based wires [PMET876 (55 % Ni, 17 % Cr); PMET885 (97 % Ni)], and one Zn-based wire [PMET540 (99 % Zn)]. The particles generated regardless of composition were poorly soluble, complex metal oxides and mostly arranged as chain-like agglomerates and similar in size distribution as determined by micro-orifice uniform deposit impactor (MOUDI) and electrical low-pressure impactor (ELPI). To allow for continuous, sequential spray coating during a 4-hr exposure period, a motor rotated the metal pipe to be coated in a circular and up-and-down direction. In a pilot animal study, male Sprague-Dawley rats were exposed to aerosols (25mg/m(3) 4h/d 9 d) generated from electric arc wire- thermal spray coating using the stainless-steel PMET720 consumable wire. The targeted exposure chamber concentration was achieved and maintained during a 4-hr period. At 1 d after exposure, lung injury and inflammation were significantly elevated in the group exposed to the thermal spray coating aerosol compared to the air control group. The system was designed and constructed for future animal exposure studies to generate continuous metal spray coating aerosols at a targeted concentration for extended periods of time without interruption. |
Review of the physicochemical properties and associated health effects of aerosols generated during thermal spray coating processes
Antonini JM , McKinney WG , Lee EG , Afshari AA . Toxicol Ind Health 2020 37 (1) 47-58 Thermal spray coating is a process that applies a molten metal product under pressure onto a surface. Although thermal spray processes have been used for decades, exposure to aerosols formed during thermal spray coating is an emerging risk. Reports indicate that high concentrations of aerosols composed of toxic metals (e.g. chromium) are generated in the workplace. A knowledge gap exists related to the physicochemical properties of thermal spray coating aerosols as well as any potential associated health effects. The objective of this manuscript was to review thermal spray coating and previous studies that have examined the aerosols produced from this process. A thermal spray coating generator and exposure system is also described that has recently been developed to further evaluate the physical and chemical properties of aerosols formed during thermal spray coating as well as to assess the possible health effects of this process in an effort to mitigate potential occupational health hazards related to the industry. |
A system for recording high fidelity cough sound and airflow characteristics
Goldsmith WT , Mahmoud AM , Reynolds JS , McKinney WG , Afshari AA , Abaza AA , Frazer DG . Ann Biomed Eng 2009 38 (2) 469-77 Cough is considered an early sign of many respiratory diseases. Recently, there has been increased interest in measuring, analyzing, and characterizing the acoustical properties of a cough. In most cases the main focus of those studies was to distinguish between involuntary coughs and ambient sounds over a specified time period. The objective of this study was to develop a system to measure high fidelity voluntary cough sounds to detect lung diseases. To further augment the analysis capability of the system, a non-invasive flow measurement was also incorporated into the design. One of the main design considerations was to increase the fidelity of the recorded sound characteristics by increasing the signal to noise ratio of cough sounds and to minimize acoustical reflections from the environment. To accomplish this goal, a system was designed with a mouthpiece connected to a cylindrical tube. A microphone was attached near the mouthpiece so that its diaphragm was tangent to the inner surface of the cylinder. A pneumotach at the end of the tube measured the airflow generated by the cough. The system was terminated with an exponential horn to minimize sound reflections. Custom software was developed to read, process, display, record, and analyze cough sound and airflow characteristics. The system was optimized by comparing acoustical reflections and total signal to background noise ratios across different designs. Cough measurements were also collected from volunteer subjects to assess the viability of the system. Results indicate that analysis of cough characteristics has the potential to detect lung disease. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 04, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure