Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: Addis JD[original query] |
---|
Laboratory development and pilot-scale deployment of a two-part foamed rock dust
Brown CB , Perera IE , Harris ML , Chasko LL , Addis JD , Klima S . J Loss Prev Process Ind 2022 74 U.S. Code of Federal Regulations 30 CFR 75.402 and 75.403 require 80% total incombustible content to be maintained within 40 feet of the coal mine face via the liberal application of rock dust. Unfortunately, this application of rock dust limits miners' visibility downwind and can increase the miners' exposures to a respirable nuisance dust. Wet rock dust applied as a slurry is, at times, used to negate these negative effects. Although this aids in meeting the total incombustible limits, the slurry forms a hard cake when dried and no longer effectively disperses as needed to suppress a coal dust explosion. As a result, a dry rock dust must be reapplied to maintain a dispersible layer. Therefore, researchers from the National Institute for Occupational Safety and Health (NIOSH) have been working towards finding and testing a foamed rock dust formulation that can be applied wet on mine surfaces and remain dispersible once dried which minimizes the likelihood of mine disasters, including mine explosions. The initial tests were aimed at discerning dispersion characteristics of three different foamed rock dusts via the NIOSH-developed dispersion chamber and led to identification of a two-part foam with adequate dispersion characteristics. The current study was conducted to assess the robustness of the two-part foamed rock dust. Through a series of laboratory-scale experiments using the dispersibility chamber, the effects of testing conditions and product formulations on the foam's dispersibility was determined. Some of the tested variables include: exposing the foam to high humidity, varying the component levels of the foamed rock dust, altering the rock dust size distribution, and varying the rock dust types. Further pilot-scale tests examined the atmospheric concentrations of dust via personal dust monitors downwind of foamed rock dust production and application. Additionally, product consistency was recorded during pilot-scale testing at key points in the formulation and application. The results of these experiments will be discussed in this paper. © 2021 |
Face ventilation on a bleederless longwall panel
Schatzel SJ , Gangrade V , Addis JD , Hollerich CA , Chasko LL . Min Metall Explor 2019 36 (3) 531-539 A ventilation study using tracer gas was conducted at a western US coal mine. The objective of the study was to evaluate the movement of longwall face air exchanges between the face and worked-out area and to document the presence or absence of face airflow pathways between these locations. The mine operator uses a bleederless longwall ventilation system with a back return and a blowing mine ventilation system. The study was conducted on an active panel and included both underground and surface monitoring sites. The study used sulfur hexafluoride (SF6) released as a slug on the longwall face and in the front of the gob inby the face. The velocity of the tracer gas movement in the gob was 0.019 m/s (3.7 fpm). The rate of movement for the overall tracer gas slug averaged about 0.0091 m/s (1.8 fpm). A separate tracer gas test initiated with the release of SF6 into the legs of the first shield showed the existence of more than one pathway of face air in the general direction from the headgate towards the tailgate corner. Maintaining adequate ventilation air on longwall faces is important for worker safety and for the dilution of methane emitted from the face and caved gob. A more detailed characterization of longwall system air and gas movement allows a mine to better assess its ventilation design for controlling gas on the face and in the gob. |
Investigating the impact of caving on longwall mine ventilation using scaled physical modeling
Gangrade V , Schatzel SJ , Harteis SP , Addis JD . Min Metall Explor 2019 36 (4) 729-740 In longwall mining, ventilation is considered one of the more effective means for controlling gases and dust. In order to study longwall ventilation in a controlled environment, researchers built a unique physical model called the Longwall Instrumented Aerodynamic Model (LIAM) in a laboratory at the National Institute for Occupational Safety and Health (NIOSH) Pittsburgh Mining Research Division (PMRD) campus. LIAM is a 1:30 scale physical model geometrically designed to simulate a single longwall panel with a three-entry headgate and tailgate configuration, along with three back bleeder entries. It consists of a twopart heterogeneous gob that simulates a less compacted unconsolidated zone and more compacted consolidated zone. It has a footprint of 8.94 m (29 ft.) by 4.88 m (16 ft.), with a simulated face length of 220 m (720 ft.) in full scale. LIAM is built with critical details of the face, gob, and mining machinery. It is instrumented with pressure gauges, flow anemometers, temperature probes, a fan, and a data acquisition system. Scaling relationships are derived on the basis of Reynolds and Richardson numbers to preserve the physical and dynamic similitude. This paper discusses the findings from a study conducted in the LIAM to investigate the gob-face interaction, airflow patterns within the gob, and airflow dynamics on the face for varying roof caving characteristics. Results are discussed to show the impact of caving behind the shields on longwall ventilation. |
Detonability of natural gas-air mixtures
Gamezo VN , Zipf Jr RK , Sapko MJ , Marchewka WP , Mohamed KM , Oran ES , Kessler DA , Weiss ES , Addis JD , Karnack FA , Sellers DD . Combust Flame 2011 159 (2) 870-881 Direct initiation experiments were carried out in a 105 cm diameter tube to study detonation properties and evaluate the detonability limits for mixtures of natural gas (NG) with air. The natural gas was primarily methane with 1.5–1.7% of ethane. A stoichiometric methane–oxygen mixture contained in a large plastic bag was used as a detonation initiator. Self-supporting detonations with velocities and pressures close to theoretical CJ values were observed in NG–air mixtures containing from 5.3% to 15.6% of NG at atmospheric pressure. These detonability limits are wider than previously measured in smaller channels, and close to the flammability limits. Detonation cell patterns recorded near the limits vary from large cells of the size of the tube to spiral traces of spin detonations. Away from the limits, detonation cell sizes decrease to about 20 cm for 10% NG, and are consistent with existing data for methane–air mixtures obtained in smaller channels. Observed cell patterns are very irregular, and contain secondary cell structures inside primary cells and fine structures inside spin traces. |
Methane-air detonation experiments at NIOSH Lake Lynn Laboratory
Zipf Jr RK , Gamezo VN , Sapko MJ , Marchewka WP , Mohamed KM , Oran ES , Kessler DA , Weiss ES , Addis JD , Karnack FA , Sellers DD . J Loss Prev Process Ind 2011 26 (2) 295-301 The methane-air detonation experiments are performed to characterize high pressure explosion processes that may occur in sealed areas of underground coal mines. The detonation tube used for these studies is 73m long, 105cm internal diameter, and closed at one end. The test gas is 97.5% methane with about 1.5% ethane, and the methane-air test mixtures varied between 4% and 19% methane by volume. Detonations were successfully initiated for mixtures containing between 5.3% and 15.5% methane. The detonations propagated with an average velocity between 1512 and 1863m/s. Average overpressures recorded behind the first shock pressure peak varied between 1.2 and 1.7MPa. The measured detonation velocities and pressures are close to their corresponding theoretical Chapman-Jouguet (CJ) detonation velocity (DCJ) and detonation pressure (PCJ). Outside of these detonability limits, failed detonations produced decaying detached shocks and flames propagating with velocities of approximately 1/2 DCJ. Cell patterns on smokefoils during detonations were very irregular and showed secondary cell structures inside primary cells. The measured width of primary cells varied between 20cm near the stoichiometry and 105cm (tube diameter) near the limits. The largest detonation cell (105cm wide and 170cm long) was recorded for the mixture containing 15.3% methane. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure